
FACULTY OF SCIENCE TANTA UNIVERSITY

POSTGRADUATE PROGRAM AND COURSE SPSECIFICATION

Volume (2)

GEOLOGY - BOTANY - ZOOLOGY

2014/2015

Postradias Program and Course Specifications

Volume (2)

Geology - Zoology - Botany

TO WHOM IT MAY CONCERN

This is an approved copy of the Program and course specifications of the Post-graduate Program offered by, Faculty of Science, Tanta University, for the academic year 2014-2015.

Vice Dean of the Faculty for Education and Student Affairs

Dean of The Faculty

Prof. Ebrahem Abdallah Younes

Prof. Tarek A. Fayed

شكر وتقدير

الى السيد الأستاذ الدكتور/ وكيل الكلية لشنون الدراسات العليا والبحوث والسيد الأستاذ الدكتور رؤساء/ قسم الجيولوجيا – علم الحيوان - النبات والسيد الاستاذ الدكتور رؤساء/ قسم الجيولوجيا وحدة ضمان الجودة والسيد الاستاذ الدكتور مدير/ وحدة ضمان الجودة والسادة الزملاء أعضاء هيئة التدريس بوحدة ضمان الجودة والسادة الزملاء أعضاء هيئة التدريس بالأقسام المذكورة

والذين لولا جهدهم الوفير لما أمكن إتمام هذا العمل

حقوق الطبع والنشر ۞ ٢٠١٥ من قبل كلية العلوم، جامعة طنطا.

لا يجوز استنساخ أي جزء من هذا المنشور أو تخزينه في نظام استرجاعي أو تحويله إلى أي شكل أو بأي وسيلة، إلكترونية أو ميكانيكية، التصوير أو بالتسجيل أو غيرها، دون الحصول على إذن كتابي من كلية العلوم، جامعة طنطا.

Postgraduate

Program and Course Specifications

Volume (2)

Geology - Zoology - Botany

Teamwork

Prof. Hoda Kamal Elsayed Director of the Quality Assurance Unit Faculty of Science – Tanta University

Geology Teamwork

Prof. Mohamed Abd El-Rahman

Dr. Mohamed Sobhy

Geology Department

Geology Department

Faculty of Science – Tanta University

Faculty of Science - Tanta University

Zoology Teamwork

Prof. Nahla El-Shazly

Zoology Department

Faculty of Science - Tanta University

Botany Teamwork

Prof. Alaa M. Abozeid

Prof. Mahmoud Abo Al-Yazeed

Botany Department

Botany Department

Faculty of Science – Tanta University

Faculty of Science – Tanta University

Postractuale Program and Gourse Specifications

Geology

Contents

C	D
Course name	Page
Academic Standards for the M.Sc. of Geology	I
Diploma of Applied Geology Programme Specification	1 -
Hydrogeology, Subsurface Geology, Ore Microscopy	7
Geology of Ore Deposits, Ore Exploration, Mining Geology	13
Structural Geology, Economic Minerals, Photogeology, Nuclear Geology	20
Computer	26
Statistics	32
Diploma of Geophysics Programme Specification	36
Gravity Methods and Electric Methods	42
Magnetic Methods & Seismological Methods	47
Field Geology and Mathematics	50
Computer	56
Statistics	60
Master Of Mineralogy And Petrology Programme Specification	64
Experimental Mineralogy	72
Geochemistry	75
Mineral Deposits and Ore Microscopy	79
Igneous Petrology	83
Sedimentary Petrology	89
Industrial and Radioactive Minerals	91
Statistics	95
Computer	99
Essay and Research	103
Master Of Paleontology And Stratigraphy Programme Specification	106
Paleontology	114
Stratigraphy	121
Geotectonics	124
Field Geology	127
Sedimentation and Correlation	131
Petroleum Geology	134
Statistics	140
Computer	144
Essay and Research	148
Master of Applied Geophysics Programme Specification	151
Gravity Methods	158
Seismic Methods	162
Electrical Methods	166
Magnetic Methods	170
Statistics	174
Computer	179
Essay and Research	183

Academic Standards for the M.Sc. of Geology

The Academic Reference Standards for the award of the M.Sc. degree in Geology as well the attributes and capabilities of the graduate were based on the General Academic Reference Standards (ARS) for graduate studies published by the National Authority for Quality Assurance and Accreditation of Education for M.Sc. degree. The following Specific Academic Standards for the M.Sc. of Geology were approved by the Council of the physics department, on 28/12/2014.

• Graduate Attributes

The M.Sc. graduate of Geology must have the ability to:

- 1. Apply the knowledge of geology, its related disciplines, applications and tools to the solution of the scientific research problems in one of the available fields of research in the physics department such as: Rock petrology, Mineralogy, Geochemistry, Stratigraphy, Paleontology, Hydrogeology, Applied geology, Geological information systems, Geophysics, Petroleum geology and Environmental geology.
- 2. Gain new knowledge and continually enhance information to improve the understanding and handling issues in one of the different branches of Geology.
- **3.** Participate in the development and implementation of Geological study in the professional practice.
- **4.** Participate in university and community development.
- **5.** Share in multidisciplinary team work and have the ability to work under contradictory conditions.
- **6.** Hold professional values that maintain individuality, positive thinking and self-confidence.
- 7. Collect, summarize and present data, undertake professional and ethical responsibilities.
- **8.** Use modern technology effectively and develop professional skills.

A. Knowledge and understanding:

By the end of the master's program, graduate must be able to:

- A1. Explain theories and fundamentals of physical and historical geology as well as in related and supporting areas.
- A2. Recognize mutual influence between professional practice and its impacts on the environment.
- A3. Demonstrate scientific developments in all fields of geological researches such as Mineralogy, Geochemistry, Stratigraphy, Paleontology, Hydrogeology, Applied geology, Petroleum geology and Environmental geology
- A4. Recognize the basics and ethics of scientific research in geology.

B. Intellectual skills

By the end of the master's program, graduate must be able to:

- B1. Analyze and evaluate results the in one field of geological researches.
- B2. Solve specialized problems in the different geological fields.
- B3. Conduct a research study and / or write a methodology of a scientific study on a research problem in the geology field.
- B4. Evaluate risk in professional practices in the geology field.

- B5. Plan to improve performance in the geology field.
- B6. Make professional decision in diverse professional contexts.

C. Professional skills:

- By the end of the study master's program, graduate must be able to:
 - C1. Recognize modern professional basic skills in the geology field.
 - C2. Write and evaluate professional reports.
 - C3. Evaluate and use methods and tools in the different geological fields.

D. General and transferable skills:

- By the end of the study master's program, graduate must be able to:
 - D1. Effectively communicate in different forms.
 - D2. Use of information technology to serve the professional practice.
 - D3. Self-evaluate and identify personal learning needs.
 - D4. Use different sources for acquire information and knowledge.
 - D5. Develop rules and indicators for assessing the performance of others.
 - D6. Work in a team, and lead teams in various professional contexts.
 - D7. Manage time efficiently.
 - D8. Enhance self- and continuous learning in the different geological fields

Diploma Program of Applied Geology

A. Programme Specification

Diploma of Applied Geology
Diploma of Applied Geology
Geology Department
Faculty of Science – TU
Tanta University
Prof. Ibrahim A. Salem
Prof. Salah N. Ayad, Professor of Geology, Faculty of
Science, Mansura University.
Academic Reference Standards (ARS)
Academic Reference Standards (ARS)
Every year in September
Internal Periodic Review, Summer 2014
September, 2014

1. Aims

- To provide a sound basis of knowledge and understanding for the study the Geological Sciences applying to the natural environment and industry.
- To recognize applicable theories for the interpretation of geological information.
- To develop practical and professional skills to the analysis of the geological data in a responsible and safe manner, paying due attention to risk assessment, rights of access, relevant health and safety regulations, and sensitivity to the impact of investigations on the environment and stakeholders.
- To provide general skills in learning, information technology, data processing and communication appropriate to any subsequent employment
- To develop an attitude of professional competence, and to provide the foundation for a career as a professional Applied Geologist.

2. Intended Learning outcomes

A. Knowledge and understanding:

On successful completion a graduate should have developed:

- A1. A coherent, detailed and multi-disciplinary knowledge of Applied Geology, at least some of which is at, or informed by, the forefront of knowledge in the discipline, both from an academic and industrial standpoint.
- A2. An understanding of geological processes related to the formation of Earth's natural resources and their exploitation by industry.
- A3. A detailed knowledge of the terminology, nomenclature and classification systems used in a range of applied geological disciplines.
- A4. An appreciation of uncertainty, ambiguity and the limits of knowledge applicable to a range of applied geological disciplines.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Write a hypothesis, plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.
- B2. Analyze subject knowledge and understanding to find solutions to a range of applied geological problems.
- B3. Critically evaluate the published literature.
- B4. Compose theory and practice.

C. Professional and practical skills:

- C1. Select and apply appropriate applied geological techniques to the collection, analysis, and presentation of applied geological information. Store, collect—and report data of laboratory and field investigations.
- C2. Undertake laboratory and field investigations in a liable and safe paying due attention to risk assessment, rights of access, relevant health and safety regulations, and sensitivity to the impact of investigations on the environment and stakeholders.
- C3. Conduct various forms of laboratory and field investigations in specific, precise and accurate manner.

D. General and transferable skills:

- D1. able to communicate information, ideas, problems and solutions
- D2. Apply numerical and IT skills with confidence and accuracy.
- D3. Work both independently and in collaboration with others.
- D4. Take responsibility for self-managed learning and personal/professional development.

3. Academic standards

3.A External references for standards (Benchmarks):

Academic reference standards (ARS)

3.B Comparison of provision to external references:

International Academic Standards.

Academic Reference Standards:

The academic reference standards of the program of Diploma of Applied Geology are based upon the General Academic Reference Standards (ARS) published by the National Authority of Quality Assurance and Accreditation of Education (NAQAAE, 2009) for graduate studies of basics science. The following Specific Academic Reference Standards of the program of Diploma of Applied Geology were adopted by the Department of Geology, Faculty of Science, Tanta University and were approved by the Faculty Council in 20/11/2012

Specific Academic Reference Standards

3.1 Graduate Attributes

The graduates must be able to:

- 1.1. Develop applied geological approaches that meet natural environment and industry needs
- 1.2. Utilize scientific facts and theories to analyze and interpret geological information.

- 1.3. Apply practical and professional skills to to the analysis of the geological data in a responsible safe and ethical manner
- 1.4. Provide general skills in learning, information technology, data processing and communication
- 1.5. To provide the foundation for a career as a professional Applied Geologist.

3.2. Knowledge and Understanding

On successful completion a graduate should have developed:

- 2.1. Detailed knowledge of Applied Geology from an academic and industrial standpoint.
- 2.2. An understanding of Earth's processes related to the natural resources and their exploitation by industry.
- 3.3. A detailed knowledge of the terminology, nomenclature and classification systems used in applied geology issues.
- 3.4. An increase of the limits of knowledge applicable to applied geological disciplines.

3.3. Intellectual Skills

The graduates must be able to:

- 3.1. Compose hypothesis, plan and perform investigation work, evaluate the outcomes and find conclusions.
- 3.2. Analyze the data to find solutions of problems.
- 3.3. Critically assess published works in the field of applied geology.
- 3.4. Combine theoretical information and practical ones

3.4. Practical and Professional Skills

The graduates must be able to:

- 4.1. Apply proper geological techniques to the collection, processing of applied geological information and report data of laboratory and field investigations.
- 4.2. Use laboratory and field investigations in a responsible and safe considering.
- 4.3. Proceeding laboratory and field investigations in accurate manner.

3.5. General and Transferable Skills

The graduates must be able to:

- 5.1. Communicate effectively in different ways
- 5.2. Use information and communication technology with confidence and accuracy.

- 5.3. Think independently, set tasks and responsibilities.
- 5.4. consider the self-managed learning and personal/professional development.

4. Curriculum Structure and contents:

4.A	Programme duration		One Year					
4.B	Programm	e structure						
4.B.1	.B.1 Number of contact hours		per Week:					
		First term:	Lectures	13	Lab.	10	Total	18
		Second term:	Lectures	13	Lab.	10	Total	18
	Overall	Contact hours	Lectures	26	Lab.	20	Total	36
4.B.2	Number of	f contact hours	Compulsory	26	Optional	None	Optional	None

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Exer.
Code	Student must do the following modules		Hours	
2031	Hydrogeology	2	3	
	Subsurface Geology	1		
	Ore Microscopy	1		
2032	Geology of Ore deposits	2	3	
	Ore Exploration	1		
	Mining Geology	1		
2033	Structural Geology	1	3	
	Economic Minerals	1		
	Photogeology	1		
	Nuclear Geology	1		
2034	Computer	1	1	
1618	Statistics	1		·

6. Programme admission requirements

Arrangements for admission are based on the national guidelines with no Faculty control on the number of newly enrolled students.

Candidates must satisfy the general admission requirements of the University, Faculty and Geology Department and also hold one of the following:

• B. Sc. in Geology and its equivalent

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- This program is offered through two semesters over one year.
- Assessment is held in the end of the second semester and student will be eligible only on attaining pass degree (60%)
- Student who fails 1 or 2 courses must attend a resit exam at final examination

Students who fail more than two courses at the first attempt will be eligible only for a "Pass" degree following any reset examinations in all courses

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	Evaluation in May 2014 by Prof. Salah N. Ayad, Mansura University	

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place.

Name	Signature	Date
Programme Coordinator:		
Prof. Ibrahim A. Salem		/9/2014
أ. د. أبراهيم عبد الناجي سالم		
Head of Quality Assurance Unit:		
Prof. Hoda Kamal		/9/2014
أ.د. هدى كمال		
Dean of the Faculty:		
Prof. Tarek Abd elmoniem Fayed أ.د. طارق عبد المنعم فايد		/9/2014

Programme Courses-Programme ILOs Matrix

	Programme outcomes ILOs														
Courses		owle ders	_		Ir	telle	ectua	ı	Pra	actio	al	Tra	nsfe	erab	le
	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3	D4
2031 Ore															
microscop															
У	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	П	\boxtimes	П	П	П	П
Hydrogeology													Ш		
Subsurface															
geology															
2032 Mining															
geology															
Economic	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes				
ores															
Geochemical															
exploration 2033 Nuclear															
geology															
Economic															
minerals	\boxtimes			\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes				
Photogeology															ш
Structural															
geology															
1618	\vdash														
Statistics					\boxtimes					Ш	Ш		Ш	Ш	
2034															
computer				\boxtimes		\boxtimes		\boxtimes	\boxtimes		\boxtimes				

Course Title	Hydrogeology					
	Subsurface Geology	Subsurface Geology				
	Ore Microscopy					
Course Code	2031					
Academic Year	2014/2015					
Coordinator	Prof. Ibrahim A. Sale	m				
Other Staff	Prof. Bothina T. El Dousky, Prof. Zenhom E. Salem					
	Dr Shadia Abdel Rahim					
Level	Diploma Degree					
Semester	Semesters One and Two					
Pre-Requisite	B.Sc. Geology					
Course Delivery	Lecture	28 x4h				
	Practical	28 x 3h				
Parent	Geology					
Department						
Date of	September, 2014					
Approval						

1. Aims

This course is in three parts.

The first part aims to

• Enable students to acquire knowledge and understanding of groundwater with emphasis on water supplying, groundwater flow and chemistry.

The second part aims to

Enable students to acquire knowledge and understanding of the subsurface basins-

The third part aims to

. Enable students to acquire knowledge and understanding of the techniques of ore microscopy

Enable students to acquire knowledge and understanding of the ore textures, trace and rare earth elements compositions, paragensis and fluid inclusions whether for the purposes of understanding conditions of ore formation or to ascertain the possible economic value of the deposit.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this course students should acquire knowledge and understanding of:

- A1. Aquifer characteristics groundwater flow and transportation of contaminants.
- A2. Subsurface basins, depositional environments and facies with an increased limit of the knowledge.
- A3. Classification and nomenclature of the ore textures, trace, rare earth elements and isotope compositions, parageneses of ore minerals and types of fluid inclusions in ores.

Α4.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Evaluate and analyze hydrological systems and processes at wide range of scales in both space and time for the purpose of water resources assessment and construct models of the recharging, flow and flow path of groundwater, with special emphasize on groundwater in Egypt.
- B2. Combine subsurface data for correlation, modeling structures and tectonics of the deposition basins.
- B3. Interpret conditions of the ore genesis, and ascertain the possible economic value of the deposit.

C. Professional and practical skills:

Students will be able to:

- C1. Draw the hydrogeological maps and estimate the aquifer characteristics and water quality in accurate manner.
- C2. Define facies changes and draw subsurface maps and sections.

D. General and transferable skills:

- D1. Write reports and give oral representation.
- D2. Use PC packages to write, plot and present information with confidence and accuracy
- D3. Appreciate the self-managed learning and personal/professional development.
- D4. Think independently and set tasks and responsibilities in a team.

3. Contents

Part -1	Hydrogeology (Two hours/week)
Lectures 1, 2	Hydrologic cycle and hydrologic budget
Lectures 3-6	Run off and stream flow
Lectures 7-10	Aquifer characteristics
Lectures 11,12	Principles of groundwater
Lectures 13,14	Water wells
Lectures 15-18	Water chemistry and water quality
Lectures 19,20	Groundwater pollution, contaminate transport
Lectures 21,22	Investigation of groundwater
Lectures 23,24	Groundwater modeling
Lectures 25,28	Hydrogeology of Egypt
Part- 2	Subsurface Geology (An hour/week)
Lecture 1	Introduction
Lectures 2-4	Information needed for subsurface work

Lectures 5-8	Source of information for subsurface work
Lectures 9,10	Correlation
Lectures 11,12	Facies
Lectures 13,14	Depositional environments
Lectures 15-18	Basin analysis
Lectures 19-22	Application of subsurface geology
Lectures 23-26	Presentation of subsurface results (maps and sections)
Lectures 27-28	Formation evaluation
Part −3	Ores Microscopy (An hour/week)
Lectures 1-9	Mineral parageneses
Lectures 10,14	Fluid inclusions in ore minerals
Lectures 15-20	Ore textures
Lectures 21-28	Trace elements, rare earth elements and isotopes in ores.
Weeks 29, 30	Assessment Practical (3hrs/week) devoted only to Hydrogeology and Subsurface Geology

4. Teaching and Learning Methods

- Lectures
- Practical work
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 16 th Week	67.47%
Practical Examination	Р	2 Hour Examination	The 15 th Week	32.53%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential Books:

- Ore microscopy and ore petrology (Craig & Vaughan, 1981) [For Ore Microscopy course].
- Applied Hydrogeology (2000) 4th Ed. C.W.Fetter [For Hydrogeology course].
- Groundwater Hydrogeology (2004) 2nd Ed. D.K. Tood and Larry W. Mays [For Hydrogeology course].
- Levorson, A. I, 1967. Geology of petroleum. San Francisco: W.H. Freeman. W. C. [For Subsurface Geology course].

Recommended Books:

- Ore genesis (Asoke Mookherjee, 1999) [For Ore Microscopy course].
- Geochemistry, Groundwater and Pollution (2005) 2nd Ed. Appelo & Postma [For Hydrogeology course].
- Boggs,s. Jr., 1995, Principles of sedimentology and stratigraphy, 2nd ed: Engle Wood Cliffs, New Jersey [For Subsurface geology course].

Journals and website

- Journal of Economic Geology
- Mineralium Deposita
- Journal of Geophysical Research
- Hydrogeology Journal

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- TDS meter, E.C. meter, PH meter, water level meter, Flame photometer, Spectrophotometer, subsurface logs.
- Software package.

	Course Coordinator	Head of Department
Name	Prof. Ibrahim A. Salem	Prof. Abdel Fatah Zalat
Name (Arabic)	أ. د. ابراهيم عبد الناجي سالم	أ. د. عبد الفتاح زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

				ILO	S							
Courses	Knowledge a		rstanding		llectu			tical		nsf		ole
	A1	A2	А3	B1	B2	В3	C1	C2	D1	D2	D3	D4
Part – 1												
Hydrogeology												
Hydrologic cycle and												
hydrologic												
budget												
Run off and												
stream flow				Ш		Ш				\boxtimes	\boxtimes	\boxtimes
Acquifer		П		\boxtimes		П			\boxtimes	\boxtimes	\boxtimes	\boxtimes
characteristics		Ш				ш						
Principles of				П	П	П			П	П	П	П
groundwater]
Water wells									\boxtimes	\boxtimes	\boxtimes	\boxtimes
Water												
chemistry and							\boxtimes		\boxtimes	\boxtimes	\boxtimes	
water quality												
Groundwater												
pollution,				\boxtimes					\boxtimes	\boxtimes	\boxtimes	\boxtimes
contaminate transport												
Investigation of												
groundwater				Ш	Ш	Ш	Ш		Ш	Ш	Ш	Ш
Groundwater	5 7											
modeling					Ш	Ш	\boxtimes			\boxtimes	\boxtimes	\boxtimes
Hydrogeology		П							\boxtimes	\boxtimes	\boxtimes	
of Egypt						Ш	Ш	Ш				
Part-2												
Subsurface												
Geology Introduction												
				Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш
Information												
needed for		\boxtimes										
subsurface work												
Source of												
information for				_	_	_			_			
subsurface				Ш	Ш	Ш			Ш	Ш	Ш	Ш
work												
Correlation		\boxtimes			\boxtimes	П		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Facies		\square				П			\boxtimes	\boxtimes	\boxtimes	
Depositional						H						
environments									\boxtimes	\boxtimes	\boxtimes	
Basin analysis						П	П		\boxtimes	\boxtimes	\boxtimes	
,			Ш	Ш		Ш	Ш					
Application of subsurface												
geology						╚	╽╙			╵		╽╙
Presentation of												
subsurface		\boxtimes			\boxtimes			\boxtimes				
results (maps				_		_						

				ILO	S							
Courses	Knowledge and Understanding			Intellectual			Prac	tical	Tra	nsf	erak	ole
	A1	A2	А3	B1	B2	В3	C1	C2	D1	D2	D3	D4
and sections)												
Formation		\boxtimes			\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes
evaluation						П				<u> </u>		
Part – 3 Ore												
Microscopy												
Mineral			\boxtimes			\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes
parageneses							Ш	Ш				
Fluid inclusions			\boxtimes			\boxtimes				\boxtimes	\boxtimes	\boxtimes
in ore minerals												
Ore textures			\boxtimes			\boxtimes						
Trace elements, rare earth elements and isotopes in ores.			\boxtimes			\boxtimes				\boxtimes	\boxtimes	\boxtimes

Learning and Teaching methods – Course ILOs Matrix

Learning and		Course outcomes ILOs											
Teaching	Knowledge a	nd Unde	erstanding	Inte	ntellectual			tical	Tra	Transferable			
methods	A1	A2	A3	B1	B2	В3	C1	C2	D1	D2	D3	D4	
Lectures	\boxtimes	\boxtimes	\boxtimes						\boxtimes			\boxtimes	
Practical work										\boxtimes	\boxtimes	\boxtimes	
Discussions				\boxtimes	\boxtimes	\boxtimes						\boxtimes	
Term paper and reports	\boxtimes	\boxtimes	\boxtimes						\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Web searching	\boxtimes	\boxtimes	\boxtimes							\boxtimes	\boxtimes	\boxtimes	
Assignments				\boxtimes						\boxtimes			

Assessment methods - Course ILOs Matrix

Assessment methods	Course outcomes ILOs											
	Knowledge and Understanding				ntellectual			tical	Tra	nsf	eral	ole
methous	A1	A2	А3	B1	B2	В3	C1	C2	D1	D2	D3	D4
Written examination		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes						
Practical examination							\boxtimes	\boxtimes				

Course Title	Geology of Ore Depo	sits							
	Ore Exploration								
	Mining Geology								
Course Code	2032								
Academic Year	2014/2015	014/2015							
Coordinator	Prof. Ibrahim A. Salem	rof. Ibrahim A. Salem							
Other Staff	Prof. Hassan Z. Harraz	rof. Hassan Z. Harraz							
	Dr. Mohamed M. Hamdy								
Level	Diploma Degree								
Semester	Semesters One and T	wo							
Pre-Requisite	B.Sc. Geology								
Course Delivery	Lecture	28 x 4h							
	Practical	28 x 3h							
Parent	Geology								
Department									
Date of Approval	September, 2014								

1. Aims

This course is in three parts. The first part aims to provide students with detailed knowledge and understanding of the genesis and distribution of mineral deposits. The second part aims to in-depth coverage of exploration programmes of mineral deposits. The third part aims to enable students to enable students to acquire In-depth knowledge and understanding of the mining methods, mine workings, ore extraction and processing, mine waste disposal, and mining law.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this course students should acquire thorough knowledge and understanding of:

- A1. Genesis and distribution of igneous, metamorphic and sedimentary mineral deposits.
- A2. Terminology and classification of geochemical haloes, methods of mineral deposits exploration.
- A3. Mining methods, tools and workings, ore reserve classification, extraction and processing methods and mining law.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Deduce genetic models and conditions of formation of ore deposits.
- B2. Visualize and analyze exploration data and depict the anomaly locations of ore deposits.
- B3. Propose the mining methods and plan.

B4. Critically evaluate the published literature devoted to the geology of ore deposits, ore exploration and mining geology.

C. Professional and practical skills: (devoted only to part I)

Students will be able to:

- C1. Define the mineralogical composition and classify the ore deposit.
- C2. Calculate the temperature and pressure of formation of ore deposits considering scientific ethics

D. General and transferable skills:

- D1. Write reports and give oral representation.
- D2. Use PC packages to write, plot and present information with confidence and accuracy
- D3. Find effective solution for problem involving complex information.
- D4. Work independently and in a team.

3. Contents

Part −1	Geology of Ore deposits (An hour/week)
Lectures 1-6	Magmatic deposits
Lectures 7-12	Sedimentary deposits
Lectures 13,14	Evaporite deposits
Lectures 15-18	Stratiform sulphide of volcanic origin
Lectures 19,22	Placer deposits
Lectures 23,28	Mineral deposits in Egypt
Part- 2	Ore exploration (An hour/week)
Lectures 1-3	Overview of exploration geology, exploration geochemistry
Lectures 4-6	Exploration geology terminology: anomalies, background, noise, exploration geochemistry sequence
Lectures 7-9	Dispersion halos: primary dispersion halos, secondary dispersion halos mechanical
Lectures 10-12	Geochemical sampling: rock, soil, stream-sediment, water and vegetation and vapour sampling
Lectures 13-15	Geochemical survey: stream sediment and soil sampling surveys
Lectures 16-18	Field and laboratory analytical methods: field tests, field notes in exploration geochemistry, laboratory methods
Lectures 19-22	Treatment of geochemical data: geochemical maps, geostatistics (Threshold value, anomalous values, background values)

Lectures 23-28	Interpretation of geochemical data: statistical interpretation, univariate analysis, multivariate analysis
Part -3	Mining Geology (Two hours/week)
Lectures 1-4	Mining methods: open-pit, pit-slopes, underground, bulk UG, mining cycle.
Lectures 5-8	Mine workings, drill holes and method of support of underground workings.
Lectures 9-12	Method of extractions
Lectures 13	Rock pressure.
Lectures 14	Explosives.
Lectures 15	Mine lighting and mine drainage.
Lectures 16	Mine waste disposal, wastes, incidents, engineered waste
Lectures 17-21	Grade and tonnage calculations
Lectures 22-23	Ore reserve classifications
Lectures 24-26	Mining and money, contracts, prices, valuation, reserves, costing, related issues
Lectures 27-28	Future of mining, economics, automation, bacteriaetc,

4. Teaching and Learning Methods

- Lectures
- Practical work
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KU, I	3 Hour Examination	The 16 th	76.32%
Examination	κο, τ	5 Hour Examination	Week	70.5270
Practical	D	2 Hour Examination	The 15 th	23.68 %
Examination	P	Z HOUI EXAMINIATION	Week	25.00 %

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Edwards, R.P. and Atkinson, K. 1986. Ore deposit geology and its influence on mineral exploration, Chapman & Hall, New York. [For Geology of ore deposits course].
- Marjoribanks, R. W. 1997. Geological methods in mineral exploration and mining, Chapman & Hall, London [For Ore exploration course].
- Peters, W.C. 1987. Exploration and mining geology. 2nd ed., John Wiely & Sons, Inc, 706p [For Mining Geology course].

Recommended Books:

- Chugh, C.P. 1992. High technology in drilling and exploration, Oxford & IBH, New Delhi [For Mining Geology course].
- Ore genesis, 1999, Asoke Mookherjee. [For Geology of ore deposits course].
- Kuzvart, M. and Bohmer, M. 1986. Prospecting and exploration of mineral deposits, Elsevier, Amsterdam [For Ore Exploration course].

Journals and website

- Bulletin of Canadian Institute of Mining and Metallurgy
- Transactions of the Institution of Mining and Metallurgy (London)
- Mineralium Deposita
- Economic Geology
- Journal of Geochemical Exploration
- http://www.minerals.usgs.gov/minerals/index.html/
- http://www.centamin.com/investor_info.php
- http://www.serc.carleton.edu/research_education/nativelands/pineridg e/exploartionanddevelopment.html;

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Clean geochemical lab including digestion unit, ICP-MS, XRF.
- EPMA, IPMA
- Software package

	Course Coordinator	Head of Department
Name	Prof. Ibrahim A. Salem	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. إبراهيم عبد الناجي سالم	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

Course Contents	Knowledg	e and Und	lerstanding	Int	telle	ectu	ıal	Prac	tical	Transferable			
	A1	A2	А3	B1	B2	В3	В4	C1	C2	D1	D2	D3	D4
Part - 1 Geology of ore deposits													
Magmatic deposits	\boxtimes			\boxtimes			\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes
Sedimentary deposits	\boxtimes			\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes
Evaporite deposits				\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Stratiform sulphide of volcanic origin								\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes
Placer deposits	\boxtimes			\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Mineral deposits in Egypt				\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes
Part-2 Ore													
exploration													
Overview of exploration geology, exploration geochemistry													
Exploration geology terminology: anomalies,													
Dispersion halos: primary dispersion halos							\boxtimes						
Geochemical sampling: rock, soil, stream- sediment							\boxtimes			\boxtimes	\boxtimes		
Geochemical survey: stream sediment							\boxtimes				\boxtimes	\boxtimes	\boxtimes
Field and laboratory analytical methods					\boxtimes						\boxtimes		\boxtimes
Treatment of geochemical data		\boxtimes			\boxtimes		\boxtimes					\boxtimes	\boxtimes

Course Contents	Knowledg	Int	Intellectual			Prac	tical	Transferable					
	A1	A2	А3	B1	B2	В3	В4	C1	C2	D1	D2	D3	D4
Interpretation of geochemical data: statistical interpretation					\boxtimes		\boxtimes					\boxtimes	\boxtimes
Part -3 Mining Geology													
Mining methods: open-pit, pit- slopes			\boxtimes			\boxtimes	\boxtimes						
Mine workings, drill holes			\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes		
Method of extractions			\boxtimes	\boxtimes		\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes
Rock pressure.			\boxtimes			\boxtimes							
explosives			\boxtimes			\boxtimes							
Mine lighting and mine drainage.			\boxtimes										
Mine waste disposal, wastes,			\boxtimes										
Grade and tonnage calculations			\boxtimes	\boxtimes			\boxtimes					\boxtimes	\boxtimes
Ore reserve classification			\boxtimes				\boxtimes			\boxtimes	\boxtimes		
Mining and money,			\boxtimes				\boxtimes			\boxtimes	\boxtimes		
Future of mining, economics,			\boxtimes	\boxtimes			\boxtimes				\boxtimes		

Teaching Methods – Course ILOs Matrix

Teaching	Knowledge	Knowledge and Understanding					ıal	Pract	ical	Transferable			
Methods	A1	A2	А3	B1	B2	В3	B4	C1	C2	D1	D2	D3	D4
Lectures	\boxtimes	\boxtimes	\boxtimes										
Practical work								\boxtimes	\boxtimes			\boxtimes	\boxtimes
Discussions				\boxtimes	\boxtimes	\boxtimes	\boxtimes					\boxtimes	
Term paper and reports	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes
Web searching		\boxtimes										\boxtimes	\boxtimes
Assignments	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes

Assessment Methods – Course ILOs Matrix

Assessment	Kn: Un	Intellectua I				Pract	Transferabl e						
Methods A1		A2	А3	B1	B2	В3	В4	C1	C2	D1	D2	D3	D4
Written examination	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes						
Practical examinatio								\boxtimes	\boxtimes				

Course Title	Structural Geology,	Economic Minerals, Photogeology, Nuclear								
	Geology									
Course Code	2033									
Academic Year	2014/2015									
Coordinator	Prof. Samir M. Aly									
Other Staff	Prof. Mahmoud H. Ashr	of. Mahmoud H. Ashmawy								
	Prof. Mohamed Atef	rof. Mohamed Atef Noweir								
	Prof. Mohamed A. Ha	Prof. Mohamed A. Hamdy								
Level	Diploma Degree									
Semester	Semesters One and T	wo								
Pre-Requisite	B.Sc. Geology									
Course Delivery	Lecture	28 x 4h								
	Practical	28 x 3h								
Parent	Geology									
Department										
Date of Approval	September, 2014									

1. Aims

This course is in four parts. The first part aims to offer students with thorough knowledge and understanding of the geometries, kinematics and mechanics of thrust systems, and utility of the balanced-cross-sections in petroleum industry. The second part aims to give students detailed knowledge and understanding of divisions of economic minerals and harmful elements. The third part aims to provide students deep knowledge and understanding of the interpreting and processing of aerial photographs and Landsat images. The fourth part aims to provide students with deep knowledge and understanding of the radioactivity of minerals and rocks and how geologic ages are estimated using radioactive isotopes.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the students acquire thorough knowledge and understanding of:

- A1. Thrust systems, major mechanism of folding, principals of balancing techniques and structural styles in petroleum provinces.
- A2. Classification, mineralogy, chemistry and uses of economic minerals (Non-metallic and metallic).
- A3. Visual interpretation and interpretation of photographs for landforms, lithology and structure mapping.
- A4. Principals of radioactivity, radioactive analysis and radioactive isotope methods of K-Ar, Rb-Sr, U-Pb, Sm-Nd and C¹⁴.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Interpret balanced cross-sections used in the petroleum industry.
- B2. Discuss the chemical and mineralogical data of economic minerals (Non-metallic and metallic) and predict the harmful elements.
- B3. Analyze aerial photographs to interpret lithology, geological structures and landform systems.
- B4. Evaluate and analyze the distribution of radioactivity in rocks and minerals.

C. Professional and practical skills:

Students will be able to:

- C1. Construct and use the balanced cross-sections.
- C2. Detect the mineralogical and chemical compositions of economic minerals (Non-metallic and metallic.
- C3. Report lithology and structures and draw photogeologic map.

D. General and transferable skills:

- D1. Write reports and give oral representation.
- D2. Use PC packages to write, plot and present information.
- D3. Find effective solution for problem involving complex information.
- D4. Work independently and in a team.

3. Contents

Part - 1	Structural Geology (An hour/week)
Lectures 1-3	Introduction and Fundamental concepts
Lectures 4-8	Thrust geometries
Lectures 9-12	Thrust system
Lectures 13-16	Major mechanisms of folding
Lectures 17-22	Balanced cross-sections
Lectures 23-28	Structural styles in Petroleum Provinces
Part - 2	Economic Minerals (An hour/week)
Lectures 1-4	Classification of economic minerals
Lectures 5-14	Metallic minerals (mineralogy, chemistry and uses)

Lecture 15-28	Non-metallic minerals (mineralogy, chemistry and uses)
Part - 3	Photogeology (An hour/week)
Lectures 1-2	Fundamental of visual interpretation
Lectures 3-6	Approach of visual interpretation
Lectures 7-10	Equipment of visual interpretation
Lectures 11-14	Recognition of landforms (construction and destruction)
Lectures 15-18	Recognition of rock types (sedimentary, igneous and metamorphic)
Lectures 19-24	Recognition of structural features
Lectures 25-28	Writing photogeologic report
Part - 4	Nuclear Geology (An hour/week)
Lectures 1-6	Radioactivity and analysis
Lectures 7-10	K-Ar method
Lectures 11-14	Rb-Sr method
Lectures 15-18	U-Pb method
Lectures 19-24	Sm-Nd method
Lectures 25-28	C ¹⁴ method

4. Teaching and Learning Methods

- Lectures
- Practical work
- Computer modeling
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	(67.46%)
Practical Examination	Р	2 Hour Examination	The 29 th Week	(32.53%)

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Faure, G., 2004. Isotopes: Principles and applications [For Nuclear Geology course].
- Dorckin, I. V., Bogacheva, E. N., Druzhinin, A., Sobolevsky, I., Gorbunov, 1969.
 Economic mineral deposits. Higher School Public House, Moscow [For Economic Minerals course].
- Sabins, F.F., 1997. Remote Sensing: Principles and interpretation (3rd), W.H.Freeman and Company, 494 p. [For Photogeology course].
- Woodward, N.B., Boyer, S.E. and Suppe, J., 1985. An outline of balanced cross-sections. Univ. of Tennessee, Dept. of Geol. Sci, v. 11, 166 p. [For Structural geology course]

Recommended Books:

- Claude J., Allegre 2008. Isotope Geology [For Nuclear Geology course].
- Manning, D.A. 1995 Introduction to industrial minerals. Chapman & Hall, 276p. [For Economic Minerals course].
- Linesand, T.H. and Kiefer, R.W. (2000): Remote sensing and image interpretation (4th). John Wiely & Sons. Inc., 724p. [For Photogeology course].
- McClay, K.R., 1992. Thrust Tectonics. Chapman & Hall. 447 p. [For Structural geology course]
- Lowell, J.D., 1985. Structural Styles in Petroleum Exploration. OGCI Publications.
 477 p. [For Structural geology course]

Journals and website

- Industrial Geology
- Chemical Geology
- Mineralium Deposita
- International Journal of Remote Sensing
- Journal of Structural geology
- http://rsd.gsfc.nasa.gov/

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Software package

	Course Coordinator	Head of Department
Name	Prof. Samir M. Aly	Prof. Abdel Fattaf A.Zalat
Name (Arabic)	أ. د. سمير مح <i>مد علي</i>	أ. د. عبد الفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

Contents	Knowle	dge and	Unders	tanding	Int	telle	ctua	ıl	Pra	ctic	a I	Transferable			
	A1	A2	А3	A4	B1	B2	В3	В4	C1	C2	С3	D1	D2	D3	D4
Part-1 Structura	l Geolog	ЗУ													
Introduction															
Thrust geometries	\boxtimes												\boxtimes	\boxtimes	\boxtimes
Thrust system												\boxtimes	\boxtimes	\boxtimes	\boxtimes
Major mechanisms of folding												\boxtimes	\boxtimes	\boxtimes	\boxtimes
Balanced cross-sections	\boxtimes				\boxtimes				\boxtimes			\boxtimes		\boxtimes	\boxtimes
Structural styles in Petroleum Provinces					\boxtimes				\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes
Part-2 Economic	Minera	ls		I.	ı							ı			
Classification of economic minerals		\boxtimes										\boxtimes	\boxtimes		\boxtimes
Metallic minerals		\boxtimes				\boxtimes				\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes
Non-metallic minerals						\boxtimes				\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes
Part-3 Photogeo	logy														
Fundamental of visual interpretation															
Approach of visual interpretation															
Equipments of visual interpretation															
Recognition of landforms							\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Recognition of rock types			\boxtimes				\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Recognition of structural features							\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Writing photogeologic report											\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Part-4 Nuclear 0	Geology														
Radioactivity and analysis												\boxtimes	\boxtimes	\boxtimes	\boxtimes
K-Ar method				\boxtimes				\boxtimes				\boxtimes		\boxtimes	\boxtimes
Rb-Sr method				\boxtimes				\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes

U-Pb method		\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes
Sm-Nd method		\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes
C ¹⁴ method		\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes

Learning Methods – Course ILOs Matrix

Learning Methods	Knowledge and Understanding					Intellectual				ctic	al	Transferable			
	A1	A2	А3	A4	B1	B2	В3	В4	C1	C2	C3	D1	D2	D3	D4
Lectures	\boxtimes	\boxtimes													
Practical work									\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	
Computer modeling									\boxtimes				\boxtimes		
Discussions					\boxtimes	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	
Term paper and reports	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes
Web searching	\boxtimes	\boxtimes	\boxtimes	\boxtimes									\boxtimes	\boxtimes	
Assignments					\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	

Assessment Methods – Course ILOs Matrix

Learning Methods	Knowledge and Understanding					telle	Pra	ctio	al	Transferable					
	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3	D4
Written		\boxtimes	\square	\square	\boxtimes	\square	\square	\square				П		П	
exam]						ш				
Practical									\square	\square	\square				
exam					Ш			Ш	\square			ш			Ш

Course Title	Computer						
Course Code	2034						
Academic Year	2013/2014	2013/2014					
Coordinator	Prof. Mohamed E	Prof. Mohamed El-Awady					
Other Staff	Prof. Mahmoud Kamel, Prof. Qadry Zakaria						
Semester	Taught over 2 semesters						
Pre-Requisite	B.Sc.						
Course Delivery	Lecture	28 x 1h lectures					
	Practical	28 x 1h practical					
Parent	Computer Centre						
Department							
Date of Approval	September, 2014						

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- 1) Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- 2) Underpin academic work throughout postgraduate studies.
- 3) Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- a. the use of IT in the context of their postgraduate studies.
- b. the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- c. necessary graphical, statistical and frequency analyses of different types of data.
- d. powerful presentation using sophisticated software packages.
- e. internet resources.
- f. Solution of scientific problems using computer programming.
- g. different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B1.Integrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

D1. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2	Methods for graphical representations, Data analysis and Data
	modeling
	Assignment 1: Using Application programs
	Calculation of Slope and intersection of lines ,
	Best fitting for data,
	Extracting Trend , and Equations for acquired data (linear - exponential- logarithmicetc)
Lectures 3-5	Statistical Data analysis
	Assignment 2 : Using Application programs
	Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data
Lecture 6-7	Creating powerful presentation including charts, images, video etc and different attractive animations
	Assignment 3: Using PowerPoint program
	Design a real and powerful presentation with different acquired skills
Lecture 8-9	Use of internet capabilities and searching engines
	Assignment 4: Using the Internet
	Life search on the internet for some real information
Lecture 10-11	Creating Data Base and related Queries and Reports
	Assignment 5: Using Application programs
	Creating a real Data Base and apply different queries and reports
	to extract useful information
Lecture 12-13	Computer programming language
	Assignment 6: Programming using Visual Basic 6
	Solving real problems using a computer language
Lecture 14-15	Photo manipulation and enhancement using the Photoshop
	Assignment 7: Using the Photoshop program
	Practicing on manipulation and enhancing of images
Lectures 16	Introduction to Data frequency analysis using Fourier analysis
	and Fourier transformation searching for periodicities

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written	KU, I	1 Hour Examination	Term Final	60%	
Examination	KU, 1	1 Hour Examination	Term Final	00%	
Practical	KU, I	1 Hour Examination t	Term Final	200/	
Examination	KU, 1	I Hour Examination t	Term Final	30%	
Semester work	рт	Continuous		10%	
	P, T	Assessment		10%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Co	ourse Coordinator	Head of Department
Name	Prof. Mohamed M. El-Awady	Prof. El-Said Taha Rizk
Name (Arabic)	أ.د. محمد العوضي	أ.د. السيد طه رزق
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

Contents		owle	dge	and	Und	erstan	Practical	Transf	erable	
		A2	А3	A4	A5	A6	Α7	B1	C1	D1
Methods for graphical representations	\boxtimes							\boxtimes	\boxtimes	
Statistical Data analysis	\boxtimes								\boxtimes	
Creating powerful presentation	\boxtimes		\boxtimes	\boxtimes					\boxtimes	
Use of internet capabilities and searching engines	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes	
Creating Data Base	\boxtimes	\boxtimes	\boxtimes					\boxtimes	\boxtimes	\boxtimes
Computer programming language	\boxtimes	\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes
Photo manipulation using the photoshop	\boxtimes	\boxtimes		\boxtimes			\boxtimes		\boxtimes	\boxtimes
Introduction to Data frequency analysis using Fourier analysis	\boxtimes	\boxtimes		\boxtimes		\boxtimes			\boxtimes	\boxtimes

Course Title	Statistics					
Course Code	1618					
Academic Year	2013/2014					
Coordinator	Prof. Mohamed E. Abd El Monsef					
Other staff						
Level	Diploma Degree					
Semester	Semesters					
Pre-Requisite	B. Sc. Geology					
Course delivery	Lecture	28 x 1h lectures				
	Practical	-				
Parent	Mathematics Department					
Department						
Date of approval	September, 2014					

1. Aims

This module aims to provide M. Sc. students in biology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific biological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Statistical issues such as statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A2. Study design.
- A3. Types of variables that are used in geological research.
- A4. Sampling variation, how to quantify the variability and its role in comparing groups or categories.

B. Intellectual skills:

- B1. Carry out confidently simple essential statistical methods in geological research and to interpret results.
- B2. Select appropriate statistical methods for analysis of simple data sets and apply them on a computer using geo-statistical software, GraphPad.
- B3. Summaries data using graphical and tabular data.
- B4. Interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C1. Select and apply appropriate basic statistical methods for analysis of data.
- C2. Use GraphPad package in data analysis.

C3. Tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D1. Write report including graphical material.
- D2. Present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D3. Use internet and other electronic sources as a source of information.

3. Contents

	Analysis and design of research studies (two hours/week)
Lectures 1	Introduction: Variables and distributions.
Lectures 2-3	Summarizing data.
Lectures 4-5	Sampling variability of a mean.
Lectures 6-7	Analysis of quantitative data: Comparing means: comparing two samples.
Lectures 8-9	ANOVA: Comparing more than two samples.
Lecture10	Examination.
Lectures 11-12	Sampling variability of proportions.
Lectures 13-14	Analysis of categorical data; comparing two proportions
Lectures 15-16	Regression and correlation.
Lectures 17-18	Comparing correlations and regression. Multiple regressions.
Lectures 19-20	Regression and correlation: Computer applications.
Lectures 21-22	Comparing distribution: Computer applications.

Comparing means: Computer applications.

and rejecting the null hypothesis.

Comparing variances: Computer applications.

Lectures 29-30 Revision

Lectures 23-24

Lectures 25-26

Lectures 27-28

Weeks 31, 32 Assessment

4. Teaching and Learning Methods

Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.

Design of experiments: The null hypothesis, statistical significance

- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 16 th Week	90%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill.

Recommended books

- Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
- Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Abd-Elmoneim A.	Prof. Kadry Zakaria
	Mohamed	Elsherbeny
Name (Arabic)	أ. د. محمد عزت عبد المنصف	قدری زکریا الشربینی أ. د.
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

	Course outcomes ILOs													
Courses	Knowled	ge and U	Inderstand	ding	Intellectual				actio	cal	Transf	erab	le	
	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introduction		\boxtimes	\boxtimes								\boxtimes	\boxtimes		
Summarizing data		\boxtimes	\boxtimes			\boxtimes	\boxtimes		\boxtimes			\boxtimes		
Sampling variability of a mean	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes		
Analysis of quantitati ve data						\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		
ANOVA					\boxtimes					\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Sampling variability of proportio ns		\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Analysis of categoric al data	\boxtimes			\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Regression and correlati on	\boxtimes	\boxtimes					\boxtimes	\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing correlatio ns and regression	\boxtimes	\boxtimes					\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes
Regression and correlation							\boxtimes			\boxtimes	\boxtimes			\boxtimes
Comparing distributio n					\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes
Comparing means: Computer applicatio ns					\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes		С	\boxtimes	
Comparing variances: Computer applicatio ns		\boxtimes								\boxtimes	\boxtimes	С	\boxtimes	\boxtimes
Design of experimen ts				\boxtimes							\boxtimes		\boxtimes	\boxtimes

Diploma Program of Geophysics

A. Programme Specification

Programme Title	Diploma of Geophysics
Award	Diploma of Geophysics
Parent Department	Geology Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Prof. Nader H. El-Gindy
External Evaluator(s)	Prof. Salah N. Ayad, Professor of Geology, Faculty of
	Science, Mansura University.
QAA Benchmarking	Academic Reference Standards (ARS)
Standards	
Other Reference Points	
Date of delivery	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

- To provide a sound theoretical background in application of geophysics to the exploration of oil, groundwater and ore deposits.
- Learn how to acquire process and interpret different types of geophysical measurements.
- To enable the gaining of a broad range of transferable skills.
- To equip graduates with the skills to enter employment in a wide range of contexts.
- To motivate in graduates the culture of lifelong learning and continuing professional development and an appreciation of the value of science to society.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Basics of the different geophysical methods and the techniques used in different settings of geophysical surveying.
- A2. Formation and occurrence of petroleum and groundwater reservoirs, and ore deposits.
- A3. Potential factors affecting different geophysical measurements, and their implications in terms of mathematical computations of different geometrical structures and their expressions.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Formulate a hypothesis, plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.
- B2. Apply subject knowledge and understanding to address familiar and unfamiliar problems related to geophysical explorations.
- B3. Analyse, synthesise and assimilate diverse information in a critical manner.
- B4. Construct reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.
- B5. Integrate theory and practice.

C. Professional and practical skills:

- C4. Record, collect, analyse and report data of laboratory and field geophysical investigations.
- C5. Undertake laboratory and field investigations in a liable, safe and ethical manner.
- C6. Plan and conduct various forms of laboratory and field investigations in specific, precise and accurate manner.

D. General and transferable skills:

- D5. Communicate about a subject clearly, confidently and effectively using a range of presentational techniques.
- D6. Apply numerical and IT skills with confidence and accuracy.
- D7. Work both independently and in collaboration with others.
- D8. Take responsibility for self-managed learning and personal/professional development.

3. Academic standards

3.A External references for standards (Benchmarks):

National Academic Reference Standards (ARS)

3.B Comparison of provision to external references:

International Academic Reference Standards(ARS).

Academic Reference Standards:

The academic reference standards of the program of Diploma of Geophysics are based upon the General Academic Reference Standards (ARS) published by the National Authority of Quality Assurance and Accreditation of Education (NAQAAE, 2009) for graduate studies of basics science. The following Specific Academic Reference Standards of the program of Diploma of Geophysics were adopted by the Department of Geology, Faculty of Science, Tanta University and were approved by the Faculty Council in 20/11/2012

Specific Academic Reference Standards

3.1 Graduate Attributes

The graduates must be able to:

- 1.1. Develop scientific approaches that meet community needs of the geophyiscal sciences.
- 1.2. Utilize scientific facts and theories to analyze and interpret practical geophysical data.
- 1.3. Collect and analyze data using appropriate formats and techniques.
- 1.4. Postulate concepts and choose appropriate solutions to solve applied geophysical problems on scientific basis.
- 1.5. Apply effectively information technology relevant to the geophysics.
- 1.6. Participate effectively in a multidisciplinary teamwork and be flexible for adaptation, decision making and working under contradictory conditions as well as exhibiting the sense of beauty and neatness.
- 1.7. Estimate, consult and assess the visibility of the applied geophysics projects.
- 1.8. Adopt self and long life-learning and participate effectively in research activities.
- 1.9. Preparing project and lab-job training.
- 1.10. Design and undertake geophysical problems (using maps, logs, field instruments) and assess their results.

3.2. Knowledge and Understanding

Graduates must acquire knowledge and understanding of:

- 2.1. The related scientific facts, concepts, and techniques of geophysics.
- 2.2. The terminology, nomenclature and classification systems of geophysics.
- 2.3. The methods applied for interpreting and analyzing geophysical data
- 2.4. The developmental progress of the program-related knowledge.
- 2.5. The relation between geophysics and community.

3.3. Intellectual Skills

The graduates must be able to:

- 3.1. Analyze, synthesize, assess and interpret qualitatively and quantitatively applied geophysics data.
- 3.2. Develop lines of argument and appropriate judgments in accordance with scientific theories and concepts about the geophysics.

- 3.3. Construct several related and integrated information to confirm, make evidence and test hypotheses of geophysics.
- 3.4. Construct modeling of geophysical phenomenas, and evaluate the implications of sustainability and sustainable development.
- 3.5. Analyze and interpret quantitative data in maps, graphs, figures, tables and other sources of information

3.4. Practical and Professional Skills

The graduates must be able to:

- 4.1. Plan, design, process and report on the geophysical data, using appropriate techniques and considering scientific guidance.
- 4.2. Apply techniques and tools considering scientific ethics.
- 4.3. Solve problems using a range of formats and advanced approaches.
- 4.4. Identify and criticize the different methods used in addressing subject related issues.
- 4.5. Preparing project and lab-job training.

3.5. General and Transferable Skills

The graduates must be able to:

- 5.1. Use information and communication technology effectively.
- 5.2. Identify roles and responsibilities, and their performing manner.
- 5.3. Think independently, set tasks and solve problems on scientific basis.
- 5.4. Work in groups effectively; manage time, collaborate and communicate with others positively.
- 5.5. Consider community linked problems, ethics and traditions.
- 5.6. Apply scientific models, systems, and tools effectively.
- 5.7. preparing project and lab-job training.

4. Curriculum Structure and contents:

4.A	Programme duration	One Year						
4.B	Programme structure							
4.B.1	Number of contact hours	per Week:						
	First term:	Lectures	13	Lab.	10	Total	18	

		Second term:	Lectures	13	Lab.	10	Total	18
	Overall	Contact hours	Lectures	26	Lab.	20	Total	36
4.B.2	Number of	contact hours	Compulsory	26	Optional	None	Optional	None
4.B.3	Number of	credit hours of spe	ecialized cours	es	No.	33	%	92
4.B.4	Number of	contact hours of c						
	sciences ar	nd humanities:		No.	-	%	=	
4.B.5	Number of	credit hours of oth	No.	3	%	8		

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Exer.	Program ILOs Covered
Code	Student must do the following modules:		Hours		
2041	Gravity methods Electric methods	4	3		
2042	Magnetic methods Seismology	4	3		
2043	Field Geology and mathematics	4	3		
2044	Computer	1	1		
1618	Statistics	1			

6. Programme admission requirements

The applicants must have obtained a Bachelor's degree, or its equivalent, in Geology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	Prof. Salah N.	
	Ayad	

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place.

Programme Contents - Programme ILOs Matrix

				Prog	ram	me	ou	tcon	nes	ILOs						
Courses		(nowle Unders	_		l	ntel	lec	tua	ıl	Pra	cti	cal	Tr	ansi	fera	ble
	A1	A2	А3		B1	B2	B 3	В4	B5	C1	C2	С3	D1	D	2 D	3 D4
2041 Gravity methods Electric methods		\boxtimes				\boxtimes		\boxtimes		\boxtimes	\boxtimes		\boxtimes			
2042 Magnetic methods Seismolog Y		\boxtimes				\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes				
2043 Field Geology and mathemat ics						\boxtimes	\boxtimes	\boxtimes						\boxtimes		\boxtimes
2044 Computer			\boxtimes		\boxtimes				\boxtimes			\boxtimes	\triangleright			
1618 Statistics			\boxtimes		\boxtimes				\boxtimes			\boxtimes				

Name	Signature	Date
Programme Coordinator: Prof. Nader H. El-Gendy أ. د.نادر حسني الجندي		/9/2014
Head of Quality Assurance Unit: Prof. Hoda K. El Sayied أ.د. هدى كمال السيد		/9/2014
Dean of the Faculty: Prof. Tarek Abd elmoniem Fayed أ.د. طارق عبد المنعم فايد		/9/2014

Course Title	Gravity Metho	ds and Electric Methods						
Course Code	2041	2041						
Academic Year	2013/2014							
Coordinator	Prof. Nader H. I	El Gendy						
Other Staff	Prof. Mohamed	R. Soliman						
Semester	Taught over 2 s	Taught over 2 semesters						
Pre-Requisite	B.Sc. in Geolog	y or Geophysics						
Course Delivery	Lecture	28 x 2h lectures						
	Practical	28 x 4h practical						
Parent	Geology							
Department								
Date of	September, 20	September, 2014						
Approval								

1. Aims

This course will enable students to:

- 1. Acquire knowledge of the main concepts of gravity and electric methods.
- 2. Carry out different ground surveys and measurements and deal with encountered problems
- 3. Conduct different types of corrections of raw gravity and electric data
- 4. Interpret corrected data qualitatively and quantitatively

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Electric and gravitational potential fields.
- A2. Different subsurface structures and water quality by analyzing different anomalies.
- A3. Potential interpretation.

B. Intellectual skills:

They should also acquire the ability to:

- B1. Solve the gravity problems throw designing models.
- B2. Compute theoretical resistivity data and compare it with observed one.
- B3. Apply the controlling subsurface parameters.

C. Professional and practical skills:

C1. Measure 2-D and 3-D subsurface structures using different models

- C2. Draw the subsurface tectonics and basement surface maps.
- C3. Deduce water quality through resistivity measurements.

D. General and transferable skills:

- D1. Appropriate scientific communication.
- D2. Work independently and within a team.
- D3. Make good use of IT knowledge.

3. Contents

- Lectures 1-4 Basics of gravity and electric methods
- Lectures 5-7 Gravity and electric surveying
- Lectures 8-10 Types and reduction of different potential corrections
- Lectures 11-15 Data separation
- Lectures 16-20 Analysis and modeling of gravity and electric data
- Lectures 21-25 Interpretation methods
- Lectures 21-28 Application of gravity and electric methods
- Weeks 29, 30 Assessment

Practical work (3hrs /week)

4. Teaching and Learning Methods

- Lectures
- Laboratory
- Web search assignments
- Writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KU, I	1 Hour Examination	Term Final	60%
Examination	KU, I		Term Final	00%
Practical	KU, I	1 Hour Examination t	Torm Final	200/
Examination	KU, I	Hour Examination t	Term Final	30%
Semester work	рт	Continuous		1.00/
	Р, Т	Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable.

6. List of references

Essential Books:

- Introduction to geophysical prospecting (Dobrin, and Savit, 1988)
- Applied Geophysics (Telford, et al., 1990)

Recommended Books:

- Gravity and magnetic oil prospecting (Nettleton, 1976)

Periodicals, Web sites:

- J. Geophysical Research
- J. Geophysical J. International.

7. Facilities required for teaching and learning

- Computer
- Data show projector- Sophisticated licensed software

Co	ourse Coordinator	Head of Department
Name Name (Arabic)	Prof. Nader Hosni El Gendy أ.د. نادر حسنى الجندى	Prof. Abdelfattah Ali Zalat أ.د. عبدالفتاح على زلط
Signature	/9/2014	/9/2014
Date		

Course Contents - Course ILOs Matrix

				Progran	nme	ou	tcoı	ne	s I	LOs					
Courses		owled ndersta			Intellectual					Pra	icti	cal	Tra	nsfe e	erabl
	A1	A2	А3		B1	B2	В3			C1	C2	C3	D1	D2	D3
Basics of gravity and electric methods	\boxtimes	\boxtimes				\boxtimes				\boxtimes	\boxtimes		\boxtimes		
Gravity and electric surveying		\boxtimes				\boxtimes				\boxtimes	\boxtimes		\boxtimes		
Types and reduction of different potential corrections										\boxtimes				\boxtimes	
Data separation		\boxtimes	\boxtimes			\boxtimes	\boxtimes				\boxtimes			\boxtimes	
Analysis and modeling of gravity and electric data												\boxtimes			\boxtimes
Interpretati on methods		\boxtimes			\boxtimes		\boxtimes					\boxtimes		\boxtimes	
Application of gravity and electric methods		\boxtimes					\boxtimes					\boxtimes		\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

				Programm	ne c	utc	ome	es II	LOs								
Courses	Knowledge and Understanding						Intellectual				Practical			Transferable			
	A1	A2	А3		В1	B2	В3		C1	C2	C3	D1	D2	D3			
Lectures	Х	Х	Х		Х							Х					
Laboratory					Х				Х	Х	Х		Х				
Web search assignment						х						Х	Х				
Writing Reports			Х			Х	Х							Х			

Assessment Methods-ILOs

45

				Pro	gramm	e c	utc	om	es I	LOs							
Courses	Knowledge and					Intellectua					Practica			Transferabl			
Courses	Understanding						-	l			1		е				
	A1	A2	А3			B1	B2	В3		C1	C2	C3	D1	D	2 D3	3	
Written																	
Examinatio	Χ	Х	Х				Χ							Χ			
n																	
Practical																	
Examinatio			Х			Х				Х	Х	Χ		Χ			
n																	
Semester			Х					Х					Х	Х	Х		
work			^					^					^	^	^		

Course Title	Magnetic Metho	ods & Seismological Methods
Course Code	2042	
Academic Year	2013/2014	
Coordinator	Prof. Mohammed	I R. Soliman
Other Staff	Dr. Shadia T. El-K	hodary, Dr Motaz barakat
Semester	Taught over 2 se	mesters
Pre-Requisite	B.Sc. in Geology	or Geophysics
Course Delivery	Lecture	28 x 2h lectures
	Practical	28 x 4h practical
Parent	Geology	
Department		
Date of Approval	September, 201	4

1. Aims

This course will enable students to:

- A1. Acquire knowledge of basics and concepts of magnetism and seismology.
- A2. Gain and analyze different types of data.
- A3.learn how to interpret magnetic and seismological data in different geologic settings

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Basics of magnetic and seismology methods
- A2. Types of magnetic and seismological data sets.
- A3. Meaning of earthquake seismology and earthquake classification parameters.
- A4. Different magnetic and seismological data types

B. Intellectual skills:

They should also acquire the ability to:

B1. Visualize how earth's magnetic field initializes

- B2. Calculate earthquake magnitude.
- B3. Depict subsurface structures
- B4. Anticipate seismic hazards

C. Professional and practical skills:

- C1. Handle different types of magnetic and seismological data.
- C2. Collect and analyze skillfully different data types.
- C3. Analyze, locate and discriminate between different types of earthquakes
- C4. Prepare professional reports on data handling and interpretation.

D. General and transferable skills:

- D1. Conduct appropriate scientific communication.
- D2. Work independently and within a team.
- D3. Make good use of IT knowledge.

3. Contents

Lectures 1-2	Basics of magnetism and seismology
Lectures 3-4	Types of magnetism
Lectures 5-6	Magnetic data acquisition (field & lab)
Lectures 7-8	Magnetic data analysis
Lectures 9-10	Magnetic data interpretation
Lectures 11-12	Internal structure of earth
Lectures 13-14	Application of magnetic methods
Lectures 15-17	Types of seismic waves and seismic velocities
Lectures 18-19	Causes and classification of earthquakes
Lectures 20-21	Seismogram recording and its interpretation.
Lectures 22-23	Determination of earthquake parameters and its intensity
Lectures 24-25	Earthquake magnitude-frequency relation and fault-plane solution.
Lectures 26-28	Space distribution of earthquakes and the main belts
Weeks 29, 30	Assessment

Practical (3hrs/week)

4. Teaching and Learning Methods

- Lectures
- Laboratory
- Web search assignments
- Writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Butler, F. B.: Paleomagnetism, magnetic domains to geologic terrains. Blackwell Sci. Publ. 319p.
- Sharma, P.V., 1986: Geophysical methods in geology. Elsevier, Amsterdam, 442p.
- Nettleton, L. L., 1976: Gravity and magnetic in oil prospecting. Mc. Grow Hill Book Co. N. Y., 464p.

Recommended Books:

- Telford, 1992: Applied Geophysics.
- McElhinny & McFadden, 2000: Paleomagnetism, continents and oceans.
- Bath, M., (1979): Introduction to seismology, Birkauser

Periodicals, Web sites:

- J. Geophysical Research
- Geophysical J. International.
- Web sites: http://www.usgs.gov/

7. Facilities required for teaching and learning

- Computer
- Data show projector
- Sophisticated licensed software

С	ourse Coordinator	Head of Department
Name	Prof. Mohammed R. Soliman	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ.د . محمد رفعت سليمان	أ.د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

						Prog	ramn	ne ou	utcon	nes IL	.Os				
Courses		wled derst	_		In	telle	ctua	I	1	Prac	tical	Transferable			
	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	C4	D1	D2	D3
Basics of magnetism and seismology		\boxtimes							\boxtimes	\boxtimes				\boxtimes	
Types of magnetism		\boxtimes						\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	
Magnetic data acquisition (field & lab)									\boxtimes					\boxtimes	
Magnetic data analysis		\boxtimes								\boxtimes			\boxtimes	\boxtimes	
Magnetic data interpretation	\boxtimes				\boxtimes										
Internal structure of earth	\boxtimes				\boxtimes								\boxtimes		\boxtimes
Application of magnetic methods					\boxtimes								\boxtimes		
Types of seismic waves			\boxtimes		\boxtimes						\boxtimes		\boxtimes		\boxtimes
Causes and classification of earthquakes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		
Seismogram recording and its interpretation.		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes
Determination of earthquake parameters		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Earthquake magnitude- frequency relation		\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	
Space distribution of earthquakes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

		Programme outcomes ILOs														
Courses	Knowledge and Understanding I							Intellectual				cti	cal	Transferable		
	A1	A2	А3	A4		B1	B2	В3	В4	C1	C2	C3	C4	D1	D2	D3
Lectures	Х	Х	Х	Х		Х			Χ					Х		
Laboratory						Χ				Χ	Х	Х	Χ		Х	
Web search assignments							Х							Х	х	
Writing Reports			Х				Х	Х	Х							Х

Assessment Methods-ILOs

		Programme outcomes ILOs																
Courses	Knowl	Intellectual				Practical				Transferable								
	A1	A2	А3	A4		B1	B2	В3	В4	C1	C2	C3	C4	D1	D2	D3		
Written	~	Х	Х	Х			Х								Х			
Examination	Х	_ ^	^	^			^								^			
Practical				Х			Х				Х	Х	Х	Х		Х		
Examination			^			^				^	^	^	^		^			
Semester			Х	Х				Х	Х					>	Х	Х		
work			^	^				^	^					^	^	^		

Course Title	Field Geology a	nd Mathematics									
Course Code	2043										
Academic Year	2013/2014										
Coordinator	Prof. Gaafar A.	El-Baharyia									
Other Staff	Prof. Kadry Zak	aria Elsherbeny									
Semester	Taught over 2 se	Taught over 2 semesters									
Pre-Requisite	B.Sc. in Geology	or Geophysics									
Course Delivery	Lecture	28 x 4h lectures									
	Practical	28 x 3h practicals									
Parent	Geology										
Department											
Date of Approval	September, 201	.4									

1. Aims

This course will enable students to:

- 1. Demonstrate appropriate field skills for the students.
- 2. Interpret rock outcrops and other forms of surface and subsurface data with appropriate assessments of uncertainly.
- 3. Recognize high and low land geology and surface processes.
- 4. basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific geological research. Emphasis will be on practical and applied skills using example of relevance to geology students.

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Relationships between surface geologic features.
- A2. Discrimination between different rock outcrops and surface features.
- A3. Geologic maps and field observations.

A4. Statistical issues such as statistical measures for data description.

B. Intellectual skills:

They should also acquire the ability to:

- B1. Analyses field problems from all angles.
- B2. Use all the subdiscplines in geology during learning and practice.
- B3. Summaries data using graphical and tabular data.

C. Professional and practical skills:

- C1. Handle the geologic maps and structures and cross-sections.
- C2. Collect and analyze data and put them together in regional or local scale.
- C3. Use GraphPad package in data analysis.

D. General and transferable skills:

- D1. Appropriate scientific communication.
- D2. Work independently and within a team.
- D3. Make good use of IT knowledge.

3. Contents

Part-2

Part-1	Field Geology (two hours/week)
Lecture 1	Introduction
Lectures 2-6	Field evidences and significances
Lecture 7-10	Recent orientations of mapped-geo-items
Lecture 11-14	Recent trends in sampling and field mapping
Lecture 15-19	A problematic point of field observations and their interpretation in the field
Lecture 20-21	Contact types and their field criteria
Lecture 22-23	Field measurements using recent techniques
Lecture 23-25	Surficial and subsurface mapping techniques
Lecture 26-28	How to write a short-term and/or extending geological report as well.

Mathematics (two hours/week)

Practical (3hrs /week)

Analysis and design of research studies (two hours/week)

Lectures 1	Introduction: Variables and distributions.												
Lectures 2-3	Summarizing data.												
Lectures 4-5	Sampling variability of a mean.												
Lectures 6-7	analysis of quantitative data: Comparing means: comparing two												
Lectures 8-9	ANOVA: Comparing more than two samples.												
Lecture10	Examination.												
Lectures 11-12	ampling variability of proportions.												
Lectures 13-14	Analysis of categorical data; comparing two proportions												
Lectures 15-16	Regression and correlation.												
Lectures 17-18	Comparing correlations and regression. Multiple regressions.												
Lectures 19-20	Regression and correlation: Computer applications.												
Lectures 21-22	Comparing distribution: Computer applications.												
Lectures 23-24	Comparing means: Computer applications.												
Lectures 25-26	Comparing variances: Computer applications.												
Lectures 27-28	Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.												

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures
- Laboratory
- Writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written	KU, I	1 Hour Examination	Term Final	60%	
Examination	KU, 1	1 Hour Examination	Term rinar	00%	
Practical	KU, I	1 Hour Examination t	Torm Final	2.00/	
Examination	KU, 1	T HOU! Examination (Term Final	30%	
Semester work	рт	Continuous		10%	
	P, T	Assessment		10%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Introduction to field geology, Bevier, M.L. (2005).

Recommended Books:

- Compton (1985) Geology in the field
- Barnes (1995) Basic geologic mapping

Periodicals, Web sites:

- J. Petrology
- J. Sedimentary Petrology

7. Facilities required for teaching and learning

- Computer, data show and software.
- Field geology instruments.

C	ourse Coordinator	Head of Department
Name	Prof. Gaafar A. El- Baharyia	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ.د. جعفر عبدالعليم البحريه	أ.د. عبد الفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

							Prog	ram	me	out	tcon	nes II	LOs																											
Courses	Kno	wle	edge	and	Ur	ders	tandi	ng	Int	tell	ect	ual	Pr	acti	cal	Tran	sfera	ble																						
	A	1	A	2	-	43	A4		В1	.	B2	В3	C1	C2	С3	D1	D2	D3																						
Introduction	\triangleright]									\boxtimes		\boxtimes	\boxtimes		\boxtimes																								
Field evidences and significances]									\boxtimes			\boxtimes		\boxtimes	\boxtimes																							
Recent orientations of mapped-geo- items]]	\boxtimes		\boxtimes				\boxtimes	
Recent trends in sampling]				\boxtimes]]	\boxtimes			\boxtimes			\boxtimes																							
A problematic point of field observations	Þ	3]	\boxtimes] [\boxtimes				\boxtimes																						
Contact types]			[\boxtimes			\boxtimes	1	\boxtimes			\boxtimes			\boxtimes	\boxtimes																						
Field measurement]		3	[\boxtimes]	\boxtimes]	\boxtimes			\boxtimes				\boxtimes																						
Surficial and subsurface mapping techniques]		3 │	\boxtimes]	\boxtimes]	\boxtimes			\boxtimes			\boxtimes	\boxtimes																						
How to write a short-term]		3]	\boxtimes	1	\boxtimes			\boxtimes			\boxtimes	\boxtimes																						
							•					•																												
Mathematics																																								
Introduction								Г]		\boxtimes] [\boxtimes		\boxtimes																						
Summarizing data							\boxtimes				\boxtimes						\boxtimes																							
Sampling variability a mean	of						\boxtimes				\boxtimes						\boxtimes																							
Analysis of quantitativ	Д]		\boxtimes	Е]		\boxtimes] [\boxtimes	\boxtimes	\boxtimes																							
ANOVA			7		7		\boxtimes	F	7		\boxtimes	1	\exists	\Box	\boxtimes		\boxtimes	\boxtimes																						
Sampling variability proportions]]]																											
Analysis categorical data	of] [\boxtimes] [
Regression		L		L] [\boxtimes	1 L	IJĮ		\boxtimes	\boxtimes																								

and correlation								
Comparing correlations		\boxtimes					\boxtimes	
Regression and correlation		\boxtimes		\boxtimes		\boxtimes	\boxtimes	
Comparing distribution		\boxtimes		\boxtimes		\boxtimes		\boxtimes
Comparing means		\boxtimes		\boxtimes		\boxtimes		\boxtimes
Comparing variances		\boxtimes		\boxtimes		\boxtimes	\boxtimes	
Design of experiments								

Learning and Teaching Methods-ILOs

	Programme outcomes ILOs															
Courses	Knowledge and Understanding							Intellectual				tic	al	Transferable		
	A1	A2	А3	A4		В1	B2	В3		C1	C2	С3		D1	D2	D3
Lectures	Х	Х	Х	Х		Х								Х		
Laboratory						Х				Х	Х	Х			Х	
Writing Reports			х	х			Χ	Х								х

Assessment Methods-ILOs

	Programme outcomes ILOs																
Courses	Knowledge and Understanding I							Intellectual			Practical			Transferable			е
	A1	A2	А3	A4		B1	B2	В3		C1	C2	C3		D1	D2	D3	
Written	Х	V	Х	Х			х								Х		
Examination	^	Х	^	_ ^			^								^		
Practical			Х			Х				Х	х	х			Х		
Examination			^			^				^	^	^			^		
Semester work			Х	Х				Х						Х	Х	Х	

Course Title	Computer								
Course Code	2044								
Academic Year	2013/2014	2013/2014							
Coordinator	Prof. Mohamed E	Prof. Mohamed El-Awady							
Other Staff	Prof. Mahmoud Kamel, Prof. Qadry Zakaria								
Semester	Taught over 2 semesters								
Pre-Requisite	B.Sc.	B.Sc.							
Course Delivery	Lecture	28 x 1h lectures							
	Practical	28 x 1h practical							
Parent	Computer Centro	2							
Department									
Date of Approval	September, 2014								

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- 1) Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- 2) Underpin academic work throughout postgraduate studies.
- 3) Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. The use of IT in the context of their postgraduate studies.
- A2. The diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A3. Necessary graphical, statistical and frequency analyses of different types of data.
- A4. Powerful presentation using sophisticated software packages.
- A5. Different internet resources.
- A6. Solution of scientific problems using computer programming.
- A7. Photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B2.Integrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

D2. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Analysis and design of research studies (one hour/week)

Introduction: Variables and distributions. Lectures 1 Lectures 2-3 Summarizing data. Lectures 4-5 Sampling variability of a mean. Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples. Lectures 8-9 ANOVA: Comparing more than two samples. Lecture 10 Examination. Lectures 11-12 Sampling variability of proportions. Lectures 13-14 Analysis of categorical data; comparing two proportions Lectures 15-16 Regression and correlation. Lectures 17-18 Comparing correlations and regression. Multiple regressions. Lectures 19-20 Regression and correlation: Computer applications. Comparing distribution: Computer applications. Lectures 21-22 Lectures 23-24 Comparing means: Computer applications. Lectures 25-26 Comparing variances: Computer applications. Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis. Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Co	urse Coordinator	Head of Department					
Name	Prof. Mohamed M. El-Awady	Prof. El-Said Taha Rizk					
Name (Arabic)	أ.د. محمد العوضي	أ <u>د</u> السيد طه رزق					
Signature							
Date	/9/2014	/9/2014					

Course Contents - Course ILOs Matrix

	Kno	wled	lge	and	Und	erstai	nding	Practical	Transferable	
Contents	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1
Methods for graphical representations	\boxtimes	\boxtimes						\boxtimes	\boxtimes	
Statistical Data analysis	\boxtimes	\boxtimes						\boxtimes	\boxtimes	
Creating powerful presentation	\boxtimes	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes	
Use of internet capabilities and searching engines	\boxtimes			\boxtimes	\boxtimes			\boxtimes	\boxtimes	
Creating Data	\boxtimes	\boxtimes	\boxtimes					\boxtimes	\boxtimes	\boxtimes
Computer programming language	\boxtimes	\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes
Photo manipulation	\boxtimes	\boxtimes		\boxtimes			\boxtimes		\boxtimes	\boxtimes
Introduction to Data frequency analysis	\boxtimes	\boxtimes		\boxtimes		\boxtimes				

Learning and Teaching Methods-ILOs

Contents					_	and ding		Intellectual skills	Practical	Transferable
	A1	A2	А3	Α4	Α5	Α6	Α7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical										
classes								Х	Х	Х
Assignment						Х				V
S						^				X

Assessment Methods-ILOs

Contents					_	and ding		Intellectual skills	Practical	Transferable
	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical										
Examinatio n								х	Х	Х
Semester work						Х		Х		Х

Course Title	Statistics	
Course Code	1618	
Academic Year	2013/2014	
Coordinator	Prof. Kadry Zakaria	Elsherbeny
Other staff		
Semester	Taught over 2 seme	sters
Pre-Requisite	B.Sc. in Geology or	Geophysics
Course delivery	Lecture	28 x 1h lectures
	Practical	-
Parent	Mathematics Depart	ment
Department		
Date of approval	September, 2014	

1. Aims

This module aims to provide M. Sc. students in geology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific geological research. Emphasis will be on practical and applied skills using example of relevance to geology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A5. Statistical issues such as statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A6. Study design.
- A7. Types of variables that are used in geological research.
- A8. Role of sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B5. Carry out confidently simple essential statistical methods in geological research and to interpret results.
- B6. Select appropriate statistical methods for analysis of simple data sets and apply them on a computer using geo-statistical software, GraphPad.

- B7. Summaries data using graphical and tabular data.
- B8. Interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C4. Select and apply appropriate basic statistical methods for analysis of data.
- C5. Use GraphPad package in data analysis.
- C6. Tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D4. Write report including graphical material.
- D5. Present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D6. Use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

Introduction: Variables and distributions. Lectures 1 Lectures 2-3 Summarizing data. Lectures 4-5 Sampling variability of a mean. Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples. Lectures 8-9 ANOVA: Comparing more than two samples. Lecture 10 Examination. Sampling variability of proportions. Lectures 11-12 Lectures 13-14 Analysis of categorical data; comparing two proportions Lectures 15-16 Regression and correlation. Lectures 17-18 Comparing correlations and regression. Multiple regressions. Lectures 19-20 Regression and correlation: Computer applications. Lectures 21-22 Comparing distribution: Computer applications. Lectures 23-24 Comparing means: Computer applications. Lectures 25-26 Comparing variances: Computer applications. Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 16 th Week	90%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill. *Recommended books*
 - Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
 - Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Kadry Zakaria Elsherbeny	Prof. Kadry Zakaria Elsherbeny
Name (Arabic)	أ. د. قدرى زكريا الشربيني	أ. د. قدرى زكريا الشربيني
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

	Programme outcomes ILOs													
Courses		Knowle Unders	edge an standin		In	telle	ectu	al	Pra	cti	cal	Trans	sfera	ble
	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introductio n		\boxtimes		\boxtimes				\boxtimes			\boxtimes		\boxtimes	
Summarizin g data		\boxtimes	\boxtimes			\boxtimes	\boxtimes							
Sampling variability of a mean			\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes		
Analysis of quantitati ve data					\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		
ANOVA	\boxtimes				\boxtimes	\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Sampling variability of proportio ns	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Analysis of categoric al data	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Regression and correlati on	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing correlations		\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes		\triangleright	
Regression and correlation.		\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes		\triangleright	
Comparing distributi on		\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\triangleright	
Comparing means			\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\triangleright	
Comparing variances		\boxtimes								\boxtimes	\boxtimes			
Design of experime nts	\boxtimes	\boxtimes	\boxtimes	\boxtimes							\boxtimes			\boxtimes

`Learning and Teaching Methods-ILOs

	Programme outcomes ILOs														
Courses	Knowledge and Understanding						Intellectual			Practical		Transferable			
	A1	A2	А3	A4		В1	В2	В3	B4			D1	D2	D3	
Lectures	Х	Х	Х			Х	Х	Χ				Х	Χ		
private study				Х					Х					Х	

Assessment Methods-ILOs

	Programme outcomes ILOs															
Courses	Knowledge and Understanding Intellectual Practical								Transferable							
	A1	A2	А3	A4		B1	B2	ВЗ	В4	C1	C2	С3	D1	D2	D3	
Written Examination	х	Х	х	Х		Х	Х									
Oral Assessment								Х	Х					Х		
Semester work									Х				Х		Х	

M.Sc. Programme of Mineralogy & Petrology

A. Programme Specification

Programme Title	Master of Mineralogy and Petrology
Award	Master of Mineralogy and Petrology
Parent Department	Geology Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Prof. Ibrahim A. Salem
External Evaluator(s)	Prof. Dr. Salah N. Ayad, Professor of Geology, Faculty of Science, Mansura University
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Other Reference Points	
Date of intake	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

The primary purpose of this programme is to provide graduate geologists with the advanced conceptual understanding, detailed factual knowledge and an awareness of responsibilities to society and the environment appropriate for success as mineralogy and petrology geologists participating in a range of contexts (e.g. ore exploration, mineral industries). In addition to these academic skills, the programme also aims to equip its graduates with a suite of transferable skills, including the ability to communicate effectively, the ability to employ IT and library resources appropriately, the ability to priorities work and to meet deadlines, the ability to work alone and with others, and the ability to use initiative and to solve problems.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire advanced knowledge and understanding of:

A1. Formation of melts and fluids under the conditions of the Earth's crust and mantle, mineral synthesis, phase transformation, mineral equilibria, and X-ray diffraction and DTA, IR and Raman spectroscopy of minerals.

- A2. Chemical processes and reactions that govern the composition of rocks and the cycles of matter and energy that transport the Earth's chemical components in time and space.
- A3. Origin and evolution of the igneous, sedimentary metamorphic rocks through time and space and in relation to the moving tectonic plate.
- A4. Classification of metallogenic environments and episodes in relation to the history of the Earth,
- A5. Industrial applications and uses of minerals.

B. Intellectual skills:

They will also acquire the ability to:

- B4. Formulate and test hypotheses.
- B5. Plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.
- B6. Apply advanced geological principles to the solution of a complex problem related to mineralogy and petrology.
- B7. Analyse, synthesise and assimilate diverse information in a critical manner.
- B8. Construct reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.

C. Professional and practical skills:

- C7. Record, collect, analyse and report data of laboratory and field investigations.
- C8. Undertake laboratory and field investigations in a liable, safe and ethical manner.
- C9. Plan and conduct various forms of laboratory and field investigations in specific, precise and accurate manner.

D. General and transferable skills:

- D9. Communicate about a subject clearly, confidently and effectively using a range of presentational techniques.
- D10. Efficiently use general IT skills with confidence and accuracy.
- D11. Work both independently and in collaboration with others.
- D12. Take responsibility for self-managed learning and personal/professional development.
- D13. Plan, organize and prioritize work activities in order to meet deadlines

3. Academic standards

3.A External references for standards (Benchmarks):

Academic Reference Standards (ARS)

3.B Comparison of provision to external references:

International-Academic Reference Standards.

3. Academic Reference Srandards:

The Academic Reference Standards for the program of the M.Sc. degree in Mineralogy and Petrology as well as the attributes and capabilities of the graduates were based essentially on the **General Academic Reference Standards (ARS) of graduate studies** published by the National Authority for Quality Assurance and Accreditation of Education (NAQAAE 2009). The following Specific Academic Standards for the Master Degree in Mineralogy and Petrology are adopted and were approved by the Faculty Council in 20/11/2012

Specific Academic Reference Standards

3.1 Graduate Attributes

The postgraduates of M.Sc. in Mineralogy and Petrology must have been prepared for:

- 1.1 Systematic understanding and critical awareness of topics in the area of mineralogy and petrology.
- 1.2 Apply the knowledge of geology, its related disciplines, applications and tools to the solution of the scientific research problems in the fields of research in mineralogy and petrology (e.g. ore exploration, mineral industries).
- 1.3 Generic skills, which are appropriately developed by professional practices.
- 1.4 Advanced studies in the area of mineralogy and petrology to support research work.
- 1.5 Information gathering, evaluation of published information, critical analysis of data.
- 1.6. Develop a wide range of key skills (employ IT and library resources appropriately, priorities work, meet deadlines and assess problem domains and formulate problem-solving strategies), group and individual presentations, reporting, and group tutorial discussions.

3.2. Knowledge and Understanding

By the end of the M.Sc. program, the postgraduate students must be able to acquire knowledge and understanding of:

- 2.1 In-depth knowledge of the core themes of mineralogy and petrology.
- 2.2 Different important procedures and techniques used in the field of mineralogy and petrology analyses.
- 2.3 The ethics and bases of scientific research in general and that of the mineralogy and petrology research in particular.
- 2.4 Theories of mineralogy and petrology and broaden his/her scope of theories of other interdisciplinary fields.

3.3. Intellectual Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 3.1- Apply the knowledge of the mineralogy and petrology.
- 3.2- Differentiate mineralogy and petrology problem-solving procedures and techniques.

- 3.3- Identify and analyze problems critically, set priorities and make professional decisions.
- 3.4- Develop a scientific technical planning based on sufficient mineralogy and petrology field observations.
- 3.5- Test and analyze hypotheses in the field of mineralogy and petrology deal with relevant to problems.

3.4. Practical and Professional Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 4.1- Critically evaluate and present mineralogy and petrology research.
- 4.2- Appreciate kinds of data limitation and accuracy.
- 4.3- Write professional reports efficiently.
- 4.4- Create plans to maximize the quality of the mineralogy and petrology analytical performance.
- 4.5- Evaluate resources of data in the mineralogy and petrology research and renovate them.

3.5. General and Transferable Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 5.1- Attain an independent learning technique for a lifetime, professional career development in the field of mineralogy and petrology.
- 5.2- Work out initiative plans and deal with stress and time management.
- 5.3- Communicate verbally and exchange the results and information successfully.
- 5.4- Use information and communication technology.
 - 1. , after a in the first two years of study, to
- The programme includes one year of coursework for thorough grounding. This one year of coursework permits the students a high degree of choice to suit their aptitudes and career ambitions to precede a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

4. Curriculum Structure and contents:

4.A	Programme	e duration	At most Five	years				
4.B	Coursewo	rk structure	One Year					
4.B.1	Number of	f contact hours	per Week:					
		First term:	Lectures	14	Lab.	1	Total	14
		Second term:	Lectures	14	Lab.	1	Total	14
	Overall	Contact hours	Lectures	28	Lab.	2	Total	28
4.B.2	Number of	contact hours	Compulsory	28	Optional	None	Optional	None
4.C.	Thesis		_					

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Exer.	Program ILOs Covered
Code	Three of the first six courses are obligatory, the last three ones are obligatory and a course from either the Paleontology and Stratigraphy or the Applied Geophysics M.Sc. Programs is obligatory.		Hours		
1411	Experimental Mineralogy	2	-	-	
1412	Geochemistry	2	-	ı	
1413	Mineral Deposits and Ore Microscopy	2	-	-	
1414	Igneous and Metamorphic Petrology	2	-	-	
1415	Sedimentary Petrology	2	-	-	
1416	Industrial and Radioactive Minerals	2	-	-	
1417	Essay	2	-	-	
1418	Statistics	1	-	-	
1419	Computer	1	1		

6. Programme admission requirements

The applicants must have obtained a Bachelor's degree, or its equivalent, in Geology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.

- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders (Employers)	Not applied yet	
4. External Evaluator(s) (External Examiner(s))	Prof. Salah N. Ayad	

Thesis

The thesis of M.Sc. in Mineralogy and Petrology is a formal written document representing sustained research contributes to the accumulated understanding of the Mineralogy and Petrology field. Throughout the preparation of the thesis student demonstrate in-depth, specialist knowledge and sophisticated understanding of concepts, information and techniques at the forefront of the discipline; exhibit mastery in the exercise of intellectual abilities including theoretical and practical skills; take a proactive and self-reflective role in working and to develop professional relationships with others; proactively formulate ideas and hypotheses; evaluate current issues; develop, implement and execute plans meeting deadlines and to employ IT and library resources appropriately

Responsibility for different phases in the preparation and checking of a graduate thesis rests jointly with the student, the members of supervision committee and the graduate office. The supervision committee may control of the following:

- 1. Thesis divisions and their order
- 2. Terminology for the division
- 3. The arrangement of reference material.

A graduate thesis is a permanent evidence of contribution made by students in particular field of knowledge and should reflect credit on the University as well as on the students. Student has a duty to present findings not only with precision, but also intelligently and attractively.

A thesis must include all the significant results obtained and must disclose all the methods and processes employed in research in such a detail that the work may be repeated by anyone skilled in the field. The student should be scrupulously careful to give references to all the work on which the thesis depends directly or significantly. Good usage requires documentation of statements whenever possible by reference to published and unpublished.

The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors)
- Table of contents
- Introduction, containing a definition of the thesis statement and the aim.
- Literature review.
- Materials and methods.
- Results.
- Discussion and conclusions.
- References.

Language of the thesis:

• The thesis is written in English accompanied by a summary in Arabic.

One accepted paper is required

• Before the thesis can be presented for granting the M.Sc. degree, at least one accepted paper is required

Apply the thesis to the Department Council

• With the approval of the thesis by the supervision committee, the student can apply the thesis to the Department Council.

Examiners Committee

• The examiners committee is selected by Geology Department Council. The M.Sc. Degree is awarded to the applicant by Tanta University Council, upon the recommendation of the department and the Faculty Council.

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place.

Name	Signature	Date
Programme Coordinator:		
Prof. Ibrahim A. Salem		/9/2014
أ. د. ابراهيم عبد الناجي سالم		
Head of Quality Assurance Unit:		
Prof. Hoda Kamal		/9/2014
أ.د.هدى كمال		
Dean of the Faculty:		
Prof. Tarek Abd elmoniem Fayed		
		/9/2014
أ.د. طارق عبد المنعم فايد		

Courses – Programme ILOs Matrix

		Programme outcomes ILOs														
	ŀ	(nov	vledg	ge												
Courses		а	nd			Inte	llec	tua	I	Practical			Transferable			
	Un	Understanding													ı	
	A1	A2	А3	Α4	B1	B2	В3	B4	B5	C1	C2	C3	D1	D2	D3	D4
1411]		_	_		[[[
Experimental	Ш	Ш	\boxtimes	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш
Mineralogy																
1412Geochemistr	\boxtimes	П		П	\boxtimes	П		П	П					\boxtimes		\boxtimes
у				Ш		ш			ш		ш	Ш				
1413 Mineral																
Deposits and	\boxtimes		\boxtimes			\boxtimes		\boxtimes						\boxtimes		\boxtimes
Ore Microscopy																
1414 Igneous and																
Metamorphic			\boxtimes	\boxtimes				\boxtimes					\boxtimes	\boxtimes		\boxtimes
Petrology																
1415 Sedimentary	\boxtimes		\boxtimes	\boxtimes				\boxtimes								\boxtimes
Petrology					ш	Ш	Ш		Ш	Ш	Ш	ш		Ш		
1416 Industrial																
and Radioactive	\boxtimes	\boxtimes			\boxtimes	\boxtimes			\boxtimes							
Minerals																
1417 Essay	\boxtimes	\boxtimes			\boxtimes	\boxtimes			\boxtimes				\boxtimes			\boxtimes
1418 Statistics	\boxtimes	\boxtimes			\boxtimes	\boxtimes			\boxtimes				\boxtimes		\boxtimes	\boxtimes
1419 Computer	\boxtimes	\boxtimes			\boxtimes	\boxtimes			\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes
Thesis					\boxtimes	\boxtimes	\boxtimes	\boxtimes								

Course Title	Experimental Mineral	ogy					
Course Code	1411						
Academic Year	2014/2015						
Coordinator	Prof. Hassan Z. Harraz						
Other Staff							
Level	Graduate-M. Sc.	Graduate-M. Sc.					
Semester	Semesters One and To	Semesters One and Two					
Pre-Requisite	B.Sc. Geology						
Course Delivery	Lecture	28 x 2h Lectures					
Parent	Geology Department						
Department							
Date of Approval	September, 2014						

1. Aims

This course aims to enable students to gain broad knowledge and understanding of experiment results on minerals and on the relationship between experimental mineralogy and petrology.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A5. Methods of mineral identification including X-ray diffraction, DTA, IR and Raman spectroscopy.
- A6. Chemistry of minerals.
- A7. Phase transformations.

B. Intellectual skills:

They will also acquire the ability to:

- B4. Predict mineral composition and structure.
- B5. Analyze the phase diagrams.
- B6. Depict the rocks from minerals.
- B7. Differentiate the pressure and temperature conditions of different mineral transformations.

D. General and transferable skills:

D1. Write reports and give oral representation.

- D2. Retrieve information from literature/databases using IT and library
- D3. Find effective solution for problem involving complex information.
- D4. Work independently and in a team.

3. Contents

Lecture 1	Introduction
Lectures 2-7	Mineral chemistry
Lectures 8-14	Phase equilibrium, phase rule
Lectures 15-22	Determinative mineralogy: XRD, DTA, IR and Raman spectroscopy
Lectures 23-28	Thermobarametry.
Weeks 29, 30	Assessment

4. Teaching and Learning Methods

- Lectures
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KU. I	3 Hour Examination		
Examination	κο, ι	5 Hour Examination		

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential Books:

- -Deer. W. A., Howie, R.A., Zussman, J. (1974): An introduction to the rockforming minerals. Longman,
- Ernst, W. G. (1976): petrologic phase equilibria. Freeman and Comp. 333P.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- XRD, IR and Raman Spectroscopy.
- Software package.

	Course Coordinator	Head of Department
Name	Prof. Hassan Z. Harraz	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. حسن زكريا حراز	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

	Course outcomes ILOs										
Contents	Knov Und	ı	ntell	ectu	al	Transferable					
	A1	A2	А3	B1	B2	В3	В4	D1	D2	D3	D4
Introduction	\boxtimes			\boxtimes							\boxtimes
Mineral chemistry		\boxtimes				\boxtimes		\boxtimes		\boxtimes	\boxtimes
Phase equilibrium, phase rule			\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes
Determinative mineralogy			\boxtimes	\boxtimes							\boxtimes
Thermobarametry		\boxtimes	\boxtimes		\boxtimes		\boxtimes			\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

Learning Methods	Knowledge and understanding			Intellectual Skills				General and Transferable Skills			
	A1	A2	А3	B1	B2	В3	B4	D1	D2	D3	D4
Lectures	٧	٧	٧							٧	
Discussions	٧		٧	٧	٧	٧	٧			٧	٧
Term paper and		٧	-1					V		-,	
reports		V						V		٧	
Web searching	٧	٧		٧	٧	٧	٧		٧		٧
Assignments		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

Assessment Methods-ILOs

Assessment	Knowledge and		In	Intellectual				General and				
Methods	und	understanding			Skills				Transferable Skills			
	A1	A2	А3	B1	B2	В3	B4	D1	D2	D3	D4	
Written	N.	N.	1/	J	.,	J	v			./		
Examination	V	V	V	V	٧	٧	V			V		
Oral Assessment	٧	٧	٧	٧	٧	٧	٧			٧	٧	
Semester work	٧	٧		٧	٧			٧	٧		٧	

Course coordinator:			
Head of Department:			

Course Title	Geochemistry						
Course Code	1412						
Academic Year	2014/2015	014/2015					
Coordinator	Prof. Mohamed F. Gho	rof. Mohamed F. Ghoneim					
Other Staff	Prof. Mohamed M. Abu Anbar, Prof. Mohamed M. Hamdy						
Level	Graduate-M. Sc.						
Semester	Semesters One and To	Semesters One and Two					
Pre-Requisite	B.Sc. Geology						
Course Delivery	Lecture	28 x 2h Lectures					
Parent	Geology Department						
Department							
Date of Approval	September, 2014						

1. Aims

This course aims to enable students to acquire advanced conceptual understanding, detailed factual knowledge of theoretical, analytical and applied aspects of geochemistry and emphasize a quantitative approach to geochemistry as well as developing a qualitative understanding of geochemical processes. The course also aims to develop critical, analytical problem solving skills and the transferable skills related to geochemistry.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of:

- A1. Equilibrium thermodynamic, elemental partitioning, partition coefficient, simple and exchange reactions, and fluid/rock interaction.
- A2. REEs compositions in Earth's reservoirs.
- A3. Stable and radiogenic isotope methods in the study of the Earth's major geochemical cycles.
- A4. Compositional variations of mineral chemistry with the different geologic processes.
- A5. Geochemical techniques (XRF, NNA, ICP, LA-ICP for whole-rocks and EMPA, IMPA for minerals) applicable to the research.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Apply elemental partitioning in petrogenetic studies
- B2. Estimate with more precision the Earth's processes using the distribution of REE
- B3. Discriminate between tectonic environments, melting, crystallization and enrichment processes in rocks basing on the chemical compositions of minerals.
- B4. Compare between behavior and compatibility of stable isotopes of different elements during Earth's processes and systems gaining the experience to select the proper isotope systems study.
- B5. Infer the chemical characteristic of long-lived geochemical reservoirs using radiogenic isotopes as tracers for mixing of materials from different reservoirs.

D. General and transferable skills:

- D1. Enhance self- and continuous learning in the field of specialty.
- D2. Write reports and give oral representation.
- D3. Find effective solution for problem involving complex information.

3. Contents

Lectures 1,2	Basic chemistry and thermodynamics for equilibrium models.
Lectures 3-6	Elemental partitioning, partition coefficient, simple and exchange reactions, application in petrogenetic studies.
Lectures 7-10	Fluid chemistry and rock/fluid interaction
Lectures 11,12	Geochemistry of rare earth elements REE and its distribution
Lectures 13,16	Estimation of melting and crystallization degrees from chemistry of rock-forming minerals.
Lectures 17,18	Stable isotope fractionations and source of fluids
Lectures 19,20	Geochemistry of Nobel metals
Lectures 21,24	Systems of radiogenic isotopes and isotope decay

Lectures 25-28 Analytical methods for elements and isotopes in whole-rocks (XRF, NNA, ICP, LA-ICP) and minerals (EMPA, IMPA)

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		
Oral Assessment	KU, I	Assessment Session		
Semester work	KU, I	Continuous		
		Assessment		

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential Books:

Principles of Geochemistry "Mason, 1966"

- -lectures on geochemistry "Open university"
- -Data in Geochemistry (using geochemical data), "Roltison, 1993"

Recommended Books:

- Hoefs J 1987: Stable isotope geochemistry. [For Geochemistry Course]

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.

	Course Coordinator	Head of Department
Name	Prof. Mohamed F. Ghoneim	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. محمد فؤاد غنيم	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

					С	ourse	e out	com	es IL	Os			
Contents	Knowledge and Understanding						Inte	llect	Transferable				
	A1	A2	А3	Α4	A5	B1	B2	В3	B4	B5	D1	D2	D3
Basic chemistry and thermodynamics	\boxtimes										\boxtimes		\Box
Elemental partitioning, partition coefficient	\boxtimes					\boxtimes					\boxtimes		
Fluid chemistry and rock- fluid interaction	\boxtimes										\boxtimes	\boxtimes	
Geochemistry of rare earth elements REE and its distribution		\boxtimes					\boxtimes					\boxtimes	
Estimation of melting				\boxtimes				\boxtimes				\boxtimes	\boxtimes
Stable isotope fractionations									\boxtimes				
Systems of radiogenic isotopes and isotope decay			\boxtimes							\boxtimes			\boxtimes
Analytical methods for elements and isotopes in whole-rocks					\boxtimes								

Learning and Teaching Methods-ILOs

Learning Methods		Knowledge and understanding					Intel S	lec kill		General and Transferable Skills			
	A1	A2	А3	Α4	A5	В1	B2	В3	B4	В5	D1	D2	D3
Lectures	٧	٧	٧	٧	٧								
Discussions		٧	٧			٧	٧	٧	٧	٧		٧	٧
Term paper and reports				٧	٧		٧		٧	٧	٧	٧	٧
Web searching	٧	٧	٧		٧	٧					٧		٧
Assignments		٧		٧		٧		٧	٧	٧	٧	٧	٧

Assessment Methods-ILOs

Learning Methods		Knowledge and understanding						ctu	al	General and Transferable Skills			
	A1	A1 A2 A3 A4 A5 E					B2	В3	B4	В5	D1	D2	D3
Written Examination	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧		٧	
Oral Assessment		٧			٧	٧	٧	٧	٧	٧		٧	٧
Semester work	٧		٧			٧		٧	٧		٧	٧	٧

Course coordinator:

Head of Department:

Course Title	Mineral Deposits and	Ore Microscopy
Course Code	1413	
Academic Year	2014/2015	
Coordinator	Prof. Ibrahim A. Salem	
Other Staff	Prof. Hassan Z. Harraz	
	Prof. Bothina T. El Do	usky
Level	Graduate-M. Sc.	
Semester	Semesters One and To	NO
Pre-Requisite	B.Sc. Geology	
Course Delivery	Lecture	28 x 2h Lecture
Parent	Geology Department	
Department		
Date of Approval	September , 2014	

1. Aims

This course consists of two parts. The first part aims to enable students to gain broad knowledge and understanding of genetic models of mineral deposits and their relations to tectonic movements. The second part aims to acquire advanced concrete understanding and detailed knowledge of microscopy of opaque minerals including textures, fluid inclusions and mineral paragensis in igneous, sedimentary and metamorphic ores.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of:

- A1. Genetic models of mineral deposits and their relations to tectonic movements.
- A2. Microscopic properties of metallic and non-metallic ore minerals.
- A3. Ore textures, and mineral paragensis.
- A4. Types and significance of fluid inclusions.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Discriminate and estimate genetic models of different mineral deposits.
- B2. Characterize the tectonic environments of the different mineral deposits.
- B3. Estimate the paragenetic sequence in in different ores.
- B4. Estimate the P-T conditions and compositions of the mineralizing fluids.

D. General and transferable skills:

- D1. Write reports and give oral representation.
- D2. Use IT and library to get information.
- D3. Find effective solution for problem involving complex information.
- D4. Work independently and in a team.

3. Contents

Lectures 1-5	Magmatic deposits and their relation to tectonic movement
Lectures 5-9	Sedimentary deposits and their relation to tectonic movement
Lectures 10-14	Metamorphic deposits and their relation to tectonic movement
Lectures 14-17	microscopic properties of metallic and non-metallic ore minerals, Paragenesis, geothermometry, fluid inclusions
Lectures 17-21	Ore mineral textures and paragenesis in igneous rocks
Lectures 22-28	Ore mineral textures and paragenesis in metamorphic and sedimentary rocks. $ \\$
W1-20-20	A

Weeks 29,30 Assessment

4. Teaching and Learning Methods

- Lectures
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Economic mineral deposits (Jensen & Bateman, 1985)
- Ore microscopy and ore petrology (Craig & Vaughan, 1982)

Recommended Books:

- Ore genesis (Asoke Mookherjee, 1999)

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.

	Course Coordinator	Head of Department
Name	Prof. Ibrahim A.salem	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. إبراهيم عبد الناجي سالم	أ. د. عبدالفتاح على زلط
Signature		
Date	9/2014	9/2014
	,	,

Course Contents – Course ILOs Matrix

Contents		Knowledge and understanding			I	ntello Ski	ıal	Tr	General and Transferable Skills			
	A1	A2	А3	Α4	B1	B2	В3	В4	D1	D2	D3	D4
Magmatic deposits	٧				٧	٧				٧	٧	٧
Sedimentary deposits	٧				٧	٧				٧	٧	٧
Metamorphic deposits	٧				٧	٧				٧	٧	٧
microscopic properties of metallic and non- metallic ore minerals		٧		٧				٧	٧		٧	٧
Ore mineral textures			٧				٧		٧			٧
Ore mineral textures			٧				٧		٧			٧

Learning and Teaching Methods-ILOs

Learning and teaching method		Knowledge and understanding					tual		Tr	General and Transferable Skills			
	A1	A2	А3	Α4	B1	B2	В3	В4	D1	D2	D3	D4	
Lectures	٧	٧	٧	٧									
Discussions					٧	٧	٧	٧			٧	٧	
Term paper and reports					٧	٧	٧	٧	٧		٧	٧	
Web searching					٧	٧				٧		٧	
Assignments					٧	٧			٧		٧	٧	

Assessment Methods-ILOs

Learning Methods						ellec	tual		General and Transferable Skills			
	A1	A1 A2 A3 A4					В3	В4	D1	D2	D3	D4
Written Examination	٧	٧	٧	٧	٧	٧	٧	٧				

Course Title	Igneous Petrology							
	Metamorphic Petro	logy						
Course Code	1414							
Academic Year	2014/2015							
Coordinator	Prof. Abdel Salam R	. Abu El Ela						
Other Staff	Prof. Gaafar A. Baha	ryia						
Level	Graduate-M. Sc.							
Semester	Semesters One and	Two						
Pre-Requisite	B.Sc. Geology							
Course Delivery	Lecture	28 x 2h. Lecture						
Parent	Geology Departmen	it						
Department								
Date of Approval	September, 2014							

1. Aims

This course is in two sections. The first section aims to enable students to acquire knowledge and critical understanding of the field observation of igneous rocks, origin and evolution through time and space and in relation to the moving tectonic plates. The second section aims to enable students to acquire deep knowledge and understanding of metamorphic rocks classification and processes and the relation of metamorphism to the global tectonic history.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Generation of magma in mantle and crust, magmatic gases and volatile components, oxygen fugacity, phase equilibrium of binary and ternary systems.
- A2. Petrogenesis of basalts and granites in relation to tectonic environments, ophiolite suites,
- A3. Classifications and origin of lamprophyre, carbonatite, Nepheline Syenites and kimberlite.
- A4. Recent trends in classification of metamorphic rocks, polymorphic transition, geothermo-barometry, composition-paragenesis diagrams, metamorphic differentiation and anatexis.
- A5. Paired metamorphic belts, tectonic history of metamorphism.

A6. Characters, composition, classification and genesis of amphibolites, serpentinites, and eclogites

B. Intellectual skills:

They will also acquire the ability to

- B1. Differentiate magmas formed in mantle and crust
- B2. Deduce the tectonic environments of formation of basalts and granites.
- B3. Recognize the type and origin of ophiolite, lamprophyre, carbonatite, nepheline syenites kimberlite, komatiite and anorthosite.
- B4. Estimate the thermo-barometric conditions of the metamorphism.
- B5. Recognize the tectonic history of metamorphism.

D. General and transferable skills:

- D1. Communicate effectively in writing and verbally.
- D2. Employ IT and library resources appropriately.
- D3. Find effective solution for problem involving complex information.
- D4. Work independently and in a team.

3. Contents

Part -1	Igneous Petrology (An hour/week)						
Lecturers 1,2	Generation of magma in mantle and crust.						
Lecturers 3-5	Magmatic gases and volatile components, Oxygen fugacity, Factors for magma crystallization (nucleation and crystal growth).						
Lecturers 6-8	Phase equilibrium studies of binary system with eutectic (Di-An), peritectic (Fo-Silica) and solid solution relation (Ab-An) and ternary system (Di-Ab-An) and their significance.						
Lecturers 9-11	Classification of basalts, Generation of basalts: parent materials, primary origins, secondary origins. Petrogenesis of basalts in relation to tectonic environment						
Lecturers 12-14	Ophiolite suites and their petrogenesis						
Lecturers 15-17	Classification of granites (I, S, M, A types). Granite in various tectonic environments. Petrogenesis of granites: source materials, sediments and metasediments, basalt or andesites.						
Lecturers 18-20	Petrological and geochemical characters of pegmatites and their petrogenesis						
Lecturers 21,22	Petrological characters, classification and petrogenesis of Lamprophyres						
Lecturers 23,24	Mineral composition, classification and petrogenesis of Carbonatites						

and Nepheline Syenites.

Lecturers 25,26	Aineralogy of Kimberlites and their petrogenesis.						
Lecturers 27,28	Petrography, composition and petrogenesis of Komatiite and Anorthosite						
Part -2	Metamorphic Petrology (An hour/week)						
Lecturers 1-3	Recent trends in classification of metamorphic rocks						
Lecturers 4-9	Metamorphic reactions, polymorphic transition, solid-solid, solid-gas application to geothermo-barometry						
Lecturers10-14	Composition-paragenesis diagrams, ACF and AKF diagrams, AFM projections						
Lecturers 14-17	Metamorphic differentiation and anatexis in metamorphic rocks and granite magmas.						
Lecturers 18,19	Paired metamorphic belts and their significance						
Lecturers 20,21	Global plate tectonics and metamorphism						
Lecturers 22,23	Mineralogy, texture, chemical composition, types and petrogenesis of Amphibolites						
Lecturers 24-26	Mineralogy, texture, chemical composition, types and petrogenesis of serpentinites						
Lecturers 27,28	Characters, composition, classification and genesis of Eclogites.						
Weeks 29,30	Assessment						

4. Teaching and Learning Methods

- Lectures
- Group workshops discussion
- Assignments
- Writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion					
Written	KII I	2 Hour Evamination	The 29 th	100%					
Examination	KU, I	3 Hour Examination	Week	100%					

*KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- petrology; Ehlers, E.G., Blatt, H(1982).
- Igneous petrology; MCBirney, A.R.; 2007

- Quantitative textural measurements in igneous and metamorphic petrology; Hiqqins, M.D.; 2006.

Recommended Books:

- Petrology and genesis of igneous rocks; Gupta, A.K.; 2007
- Principles of metamorphic petrology; Vermon, R.H.; 2008

Periodicals, Web sites:

- Journal of Petrology,
- Precambrian Geology,
- Journal of Metamorphic Geology,
- Contributions to Mineralogy and Petrology

7. Facilities required for teaching and learning

- Video Projectors
- Computer Presentations
- Library

	Course Coordinator	Head of Department
Name	Prof. Abdel Salam R. Abu El Ela	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. عبد السلام رشاد أبو العلا	أ.د. عبدالفتاح على زلط
Signature		
Date	9/2014	9/2014

Course Contents – Course ILOs Matrix

						Cour	se c	se outcomes ILOs							
Contents				edge stan	and			Int	elle	ctua	I	Tra	ansf	eral	ole
	A1	A2	А3	A4	A5	A6	В1	B2	В3	B4	В5	D1	D2	D3	D4
Part -1 Igneous Petrology															
Generation of															
magma	\boxtimes	Ш	Ш	Ш	Ш	Ш	\boxtimes	Ш	Ш	Ш	Ш	Ш		Ш	Ш
Magmatic gases and volatile components	\boxtimes														
Phase equilibrium															
studies of binary system with eutectic (Di-An	\boxtimes														
Classification of		\boxtimes						\boxtimes							\boxtimes
basalts	Ш			Ш					Ш						
Ophiolite suites and their petrogenesis									\boxtimes					\boxtimes	\boxtimes
classification of															
granites (I, S, M, A	Ш	Ш	\boxtimes	Ш	Ш	Ш	Ш	Ш		Ш		Ш			\boxtimes
types) Petrological and															
geochemical															
characters of	Ш	Ш	\boxtimes	Ш	Ш	Ш	Ш	Ш		Ш		Ш			\boxtimes
pegmatites															
Petrological			\boxtimes						\boxtimes					\boxtimes	\boxtimes
characters															
Mineral composition, classification			\boxtimes						\boxtimes				\boxtimes	\boxtimes	\boxtimes
Mineralogy of															
Kimberlites	Ш	Ш	\boxtimes	Ш	Ш	Ш	Ш	Ш	\boxtimes	Ш					\boxtimes
Petrography			\boxtimes						\boxtimes				\boxtimes	\boxtimes	\boxtimes
Part -2															
Metamorphic															
Petrology															
Recent trends in												_			
classification of	Ш	Ш	Ш	\boxtimes	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш		Ш	Ш
metamorphic rocks															
Metamorphic				\boxtimes						\boxtimes				\boxtimes	\boxtimes
reactions Composition-			\Box									<u> </u>			
paragenesis diagrams,			ш	\boxtimes		ш		ш	\boxtimes						\boxtimes
Metamorphic						П		П			П				
differentiation and				\boxtimes					\boxtimes						
anatexis												L			
Paired metamorphic					\boxtimes									\square	\boxtimes
belts	M	╽╙		ш			Ш			Ш		╽╙	╽╙		

						Cour	se d	outco	omes	ILOs					
Contents	Knowledge and Understanding				Intellectual				Tra	Transferable					
	A1	A2	А3	A4	A5	A6	В1	B2	В3	B4	B5	D1	D2	D3	D4
Global plate tectonics and metamorphism														\boxtimes	\boxtimes
Mineralogy,tes						\boxtimes							\boxtimes	\boxtimes	\boxtimes
Mineralogy, texture, chemical composition, types and petrogenesis of serpentinites						\boxtimes							\boxtimes	\boxtimes	\boxtimes
Characters, composition, classification and genesis of Eclogites.						\boxtimes							\boxtimes	\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

	Course outcomes ILOs														
Contents		Knowledge and Understanding				Intellectual					Transferable				
	A1	A2	А3	A4	A5	A6	B1	B2	В3	B4	В5	D1	D2	D3	D4
Lectures	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes							\boxtimes		
Group workshops discussion							\boxtimes						\boxtimes		
Assignments	\boxtimes														
Writing reports		\boxtimes		\boxtimes	\boxtimes	\boxtimes									

Assessment Methods-ILOs

Learning Methods		Knowledge and understanding					Intellectual Skills				Tra	General and Transferable Skills		
	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	D1	D2	D3	
Written Examination	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧				

Course coordinator:

Head of Department:

Course Title	Sedimentary Petrology					
Course Code	1415					
Academic Year	2014/2015					
Coordinator	Prof. Abdel-Moneem Tawfeq					
Other Staff						
Level	Graduate-M. Sc.					
Semester	Semesters One and Two					
Pre-Requisite	B.Sc. Geology					
Course Delivery	Lecture	28 x 2h. Lecture				
Parent	Geology Department					
Department						
Date of Approval	September, 2014	·				

1. Aims

This course aims to enable students to deeply understand and acquire the broad knowledge principally in the diagenetic processes affecting the silicclastic and carbonate rocks.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Physical and chemical alterations of rocks.
- A2. The main diagentic processes in silicclastic rocks.
- A3. diagenesis in both marine and non-marine carbonate rocks.

B. Intellectual skills:

They will also acquire the ability to:

- B1. differentiate between various diagentic criteria in silicclastic and carbonate rocks,
- B2. discuss and interpret the paragenetic sequence of various diagenetic processes,
- B3. Visualize the deposition environment.

D. General and transferable skills:

- D1. Critical and analytical problem solving.
- D2. Autonomous practice and team-working.
- D3. Sharing multidisciplinary learning.

3. Contents

Lectures 1-5	Definition, diagenetic processes
Lectures 6-11	Compositional and textural changes,
Lectures 12-17	Diagenesis in silicclastic rocks,
Lectures 18-21	Diagenesis in carbonate rocks

Lectures 22-25 Meteoric diagenesis

Lectures 26-28 Marine diagenesis

Weeks Assessment

4. Teaching and Learning Methods

- Lectures,
- Discussion, Presentation
- Reports and term papers,
- Web searching
- Assignments.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KU, I	3 Hour Examination	2 nd Term	100%
Examination	KU, I	S HOUI EXAMINITATION	Final	100%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential Books:

- Carbonate sediments and rocks under microscope (Adams & Mackenzie 1998)
- Sand and sandstone (Pettijohn, Potter and Siever, 1972, 618pp.)

Recommended Books:

- Moore C. H (1989) Carbonate diagenesis and porosity Elsevier Science B.V. 317 p
- Adams A.E., Mackenzie W.S., and Guilford C. (1984) Atlas of sedimentary rocks under microscope (Adams, Mackenzie, and Guilford, 1984) 112 p

Periodicals and Web sites

- Journal of sedimentary rocks
- Journal of Carbonates and evaporates
- Journal of Sedimentology

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computer Presentations and Writing Boards
- Library

	Course Coordinator	Head of Department					
Name	Prof. Abdel-Moneem Tawfeq	Prof. Abdelfattah Ali Zalat					
Name (Arabic)	أ. د. عبدالمنعم توفيق عبدالحميد	أ. د. عبدالفتاح على زلط					
Signature							
Date	9/2014	9/2014					

Course Contents – Course ILOs Matrix

Contents	Knowledge and Understanding			Intellectual			Transferable		
		A2	А3	B1	B2	В3	D1	D2	D3
Definition, diagenetic processes	\boxtimes								\boxtimes
Compositional and textural changes									\boxtimes
Diagenesis in silicclastic rocks		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes
Diagenesis in carbonate rocks			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes
Meteoric diagenesis						\boxtimes			\boxtimes
Marine diagenesis			\boxtimes						

Learning and Teaching Methods-ILOs

Learning and Teaching Methods	Knowledge and Understanding		Intellectual			Transferable			
	A1	A2	А3	B1	B2	В3	D1	D2	D3
Lectures	\boxtimes	\boxtimes	\boxtimes						
Discussion, Presentation					\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Reports and term papers			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Web searching			\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes
Assignments.		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes

Assessment Methods-ILOs

	ILOs								
Assessment Methods		wledge a Ierstandi	Intellectual						
	A1	A2	А3	B1	B2	В3			
Written exam									

Course Title	Industrial and Radioactive Minerals					
Course Code	1416					
Academic Year	2014/2015					
Coordinator	Prof. Samir M. Aly					
Other Staff	Prof. Ibrahim A. Salem					
Level	Graduate-M. Sc.					
Semester	Semesters One and Two					
Pre-Requisite	B.Sc. Geology					
Course Delivery	Lecture 28 x 2h. Lectures					
Parent	Geology Department					
Department						
Date of Approval	September, 2014					

1. Aims

This Course consists of two parts. The first part aims to enable students to acquire knowledge and understanding of classification, applications of industrial minerals either as raw materials or as additives. The second part aims to acquire knowledge and understanding of geochemistry, mineralogy, origin, occurrences in Egypt and applications of radioactive mineral deposits.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of:

- A1. Classification and specifications of industrial minerals,
- A2. Importance and uses of industrial minerals,
- A3. Geochemical and mineralogical compositions radioactive deposits,
- A4. Origin of radioactive mineral deposits.
- A5. Occurrences of radioactive mineral deposits in Egypt
- A6. Applications of radioactive mineral deposits.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Estimate the applications of industrial minerals,
- B2. Compare between industrial minerals respecting their importance and uses,
- B3. Asses the mineralogical and geochemical compositions of radioactive deposits for interpreting their origins.

D. General and transferable skills:

- D1. Employ communication technologies to write, plot and present information.
- D2. Appreciate the values of self-learning and creative thinking
- D3. Acquire the skills of working in groups according to responsibilities of each member.

2. Contents

Lecturers 2-8	Industrial	minera	ls

- Lecturers 9-14 Physical and chemical specifications of industrial minerals
- Lecturers 15-28 Industrial applications as raw materials or as additives.

Part -2 Radioactive minerals (An hour/week)

1 4 4 - 2	D = al: = = at:	:	
Lecturers 1-3	Radioactive i	minerai de	POSITS

- Lecturers 4-8 Geochemistry of radioactive mineral deposits
- Lecturers 9-13 Mineralogy of radioactive mineral deposits
- Lecturers 14-18 origin of radioactive mineral deposits
- Lecturers 19-23 Classification and occurrence of radioactive mineral deposits in Egypt
- Lecturers 24-28 Applications of radioactive mineral deposits (energy, medical, research, industry, some common radioactive isotopes and their uses

4. Teaching and Learning Methods

- Lectures
- Discussions
- Term paper and reports
- Web searching
- Assignments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KII I	2 Hour Evamination		100%
Examination	KU, I	3 Hour Examination		100%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

Chang L.L. Y. 2002. Industrial Mineralogy: Materials, Processes, and Uses. Prentice Hall, 472p.

- Studies of minerals deposits (Smirnov et al., 1985)

Recommended Books:

- -Prasad,U, (2006): Economic Geology 2nd ed. CBS publisher and distrib.
- Manning, D.A. (1995): Introduction to industrial minerals. Chapman and Hall, 276 p.

Periodicals, Web sites.

- Mineralogical Magazine
- Journal of Industrial Minerals.
- Journal of Economic Geology.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.

	Course Coordinator	Head of Department
Name	Prof. Samir M. Aly	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. سمير محمد علي	أ. د. عبدالفتاح على زلط
Signature		
Date	9/2014	9/2014

Course Contents – Course ILOs Matrix

Course outcomes ILOs													
Contents	Knowledge and Understanding							Intellectual			Transferable		
	A1	A2	А3	A4	Α5	A6	B1	B2	В3	D1	D2	D3	
		Par	t -1 lr	dustr	ial mir	erals							
Introduction	\boxtimes												
Industrial minerals	\boxtimes									\boxtimes	\boxtimes	\boxtimes	
Physical and chemical specifications of industrial minerals	\boxtimes						\boxtimes			\boxtimes	\boxtimes	\boxtimes	
Industrial applications		\boxtimes					\boxtimes				\boxtimes		
		Part	-2 Ra	dioac	tive m	ineral	s	ı	ı				
Radioactive mineral deposits													
Geochemistry of radioactive mineral deposits			\boxtimes						\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Mineralogy of radioactive mineral deposits			\boxtimes						\boxtimes	\boxtimes	\boxtimes	\boxtimes	
origin of radioactive mineral deposits				\boxtimes					\boxtimes		\boxtimes	\boxtimes	
classification and occurrence of radioactive mineral deposits in Egypt										\boxtimes	\boxtimes	\boxtimes	
Applications of radioactive mineral deposits										\boxtimes	\boxtimes	\boxtimes	

Learning and Teaching Methods-ILOs

		Course outcomes ILOs										
Learning and Teaching Methods		Knowledge and Understanding					Intellectual			Transferable		
	A1	A2	А3	A4	A5	Α6	B1	B2	В3	D1	D2	D3
Lectures	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes						
Discussions				\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes
Term paper and reports	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Web searching		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes	\boxtimes
Assignments		\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes

Assessment Methods-ILOs

		Cour	se ou						
Assessment Methods	Knowledge and Understanding			In	Intellectual				
	A1	A2	А3	Α4	A5	A6	B1	B2	В3
Written exam					\boxtimes		\boxtimes		

Course Title	Statistics					
Course Code	1638					
Academic Year	2014/2015					
Coordinator	Dr. Mohamed M. Ab	d El Monsef				
Other staff						
Level	Graduate-M. Sc.					
Semester	Semesters					
Pre-Requisite	B. Sc. Geology					
Course delivery	Lecture	28 x 1h lectures				
	Practical	-				
Parent	Mathematics Department					
Department						
Date of	September, 2014					
Approval						

1. Aims

This module aims to provide M. Sc. students in geology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific geological research. Emphasis will be on practical and applied skills using example of relevance to geology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Statistical issues such as statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A2. Study design.
- A3. Types of variables that are used in geological research.
- A4. Role of sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B1. Carry out confidently simple essential statistical methods in geological research and to interpret results.
- B2. Select appropriate statistical methods for analysis of simple data sets and apply them on a computer using geo-statistical software, GraphPad.
- B3. Summaries data using graphical and tabular data.
- B4. Interpret research findings and explain them in a clear, concise and logical manner.

D. Transferable skills

D1. Write report including graphical material.

- D2. Present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D3. Use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (1 hours/week)

Introduction: Variables and distributions. Lectures 1 Lectures 2-3 Summarizing data. Lectures 4-5 Sampling variability of a mean. Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples. Lectures 8-9 ANOVA: Comparing more than two samples. Lecture 10 Examination. Sampling variability of proportions. Lectures 11-12 Lectures 13-14 Analysis of categorical data; comparing two proportions Lectures 15-16 Regression and correlation. Lectures 17-18 Comparing correlations and regression. Multiple regressions. Lectures 19-20 Regression and correlation: Computer applications. Lectures 21-22 Comparing distribution: Computer applications. Lectures 23-24 Comparing means: Computer applications.

Comparing variances: Computer applications.

and rejecting the null hypothesis.

Lectures 29-30 Revision

Lectures 25-26

Lectures 27-28

Weeks 31, 32 Assessment

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.

Design of experiments: The null hypothesis, statistical significance

- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KU, I	3 Hour Examination	The 29 th	100%
Examination	KU, I	3 HOUI EXAMINITATION	Week	100%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill. *Recommended books*
 - Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
 - Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Mohamed Abd Elmonsef	Prof. Kadry Zakaria Elsherbeny
Name (Arabic)	أ. د. محمد عبد المنصف	أ. د. قدرى زكريا الشربينى
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

			Prog	ramme o	utco	mes	ILOs	5			
Courses	Knowled	Int	ell	ectu	ıal	Transferable					
	A1	A2	А3	A4	B1	B2	В3	В4	D1	D2	D3
Introduction	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes		
Summarizing data	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes		
Sampling variability of a mean	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes		
Analysis of quantitative data	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
ANOVA	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	
Sampling variability of proportions	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Analysis of categorical data	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Regression and correlation	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing correlations	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes
Regression and correlation	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing distribution	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing means	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	
Comparing variances		\boxtimes								\boxtimes	\boxtimes
Design of experiments	\boxtimes	\boxtimes		\boxtimes						\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

Loorning and	Course outcomes ILOs											
Learning and Teaching Methods	Knowle	Intellectual				Transferable						
reaching wiethous	A1	A2	А3	A4	В1	B2	В3	В4	D1	D2	D3	
Lectures	Х	Х	Х		Χ	Х	Χ		X	X		
private study				Х				Χ			Χ	

Assessment Methods-ILOs

	Course outcomes ILOs												
Assessment Methods	Knowl	Int	ntellectual			Transferable			ble				
	A1	A2	А3	A4		B1	В2	В3	В4	D1	D2	D3	
Written Examination	Х	Х	Х	Х		X	Х						

Course Title	Computer									
Course Code	1419	1419								
Academic Year	2014/2015	2014/2015								
Coordinator	Prof. Mohamed El-	Prof. Mohamed El-Awady								
Other Staff	Prof. Mahmoud Kamel, Prof. Qadry Zakaria									
Semester	Taught over 2 semesters									
Pre-Requisite	B.Sc.									
Course Delivery	Lecture	28 x 1h lectures								
	Practical	28 x 1h practicals								
Parent	Computer Centre									
Department										
Date of Approval	September, 2014									

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- 4) Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- 5) Underpin academic work throughout postgraduate studies.
- 6) Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

Upon successful completion of this course the students should be able to:

- A1. Define knowledge and understanding of the use of IT in the context of their postgraduate studies.
- A2. Explain the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A3. Carry out necessary graphical, statistical and frequency analyses of different types of data.
- A4. Create powerful presentation using sophisticated software packages and make use of different internet resources.
- A5. Solve scientific problems using computer programming and make use of different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B2.Write different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Write a number of computer packages to present information.

D. General and transferable skills:

D1.Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

•	\sim		4		4
3.		ոո	Te	n	TS

Lectures 1-2	Methods for graphical representations, Data analysis and Data
	modeling

Lectures 3-4 Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear exponential- logarithmicetc)

Lectures 5-6 Statistical Data analysis

Lectures 7-9 Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Creating powerful presentation including charts, images, video, Lectures 10-11 etc and different attractive animations

Lectures 12-14 Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lectures 15-17 Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Lectures 18-20 Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports to extract useful information

Lectures 21-23 Computer programming language

> **Assignment 6**: Programming using Visual Basic 6 Solving real problems using a computer language

Lectures 24-26 Photo manipulation and enhancement using the photoshop

Assignment 7: Using the Photoshop program

Practicing on manipulation and enhancing of images

Lectures 27-28 Introduction to Data frequency analysis using Fourier analysis

and Fourier transformation searching for periodicities

Weeks 29-30 Assessment

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written	KU, I	1 Hour Examination	Term Final	60%	
Examination	KU, 1	1 Hour Examination	Terrir Fillar	00%	
Practical	KU, I	1 Hour Examination t	Term Final	30%	
Examination	KU, 1	1 Hour Examination (Term rinai	3076	
Semester work	Р, Т	Continuous Assessment		10%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Co	urse Coordinator	Head of Department				
Name	Prof. Mohamed M. El-Awady	Prof. El-Said Taha Rizk				
Name (Arabic)	أ.د. محمد محمد العوضي	أد. السيد طه رزق				
Signature						
Date	/9/2014	/9/2014				

Course Contents – Course ILOs Matrix

Contents	Kno	wled	lge	and	Und	ersta	nding	Practical	Transf	erable
	A1	A2	А3	Α4	A5	A6	A7	B1	C1	D1
Methods for graphical representations	\boxtimes	\boxtimes						\boxtimes	\boxtimes	
Statistical Data analysis	\boxtimes	\boxtimes						\boxtimes	\boxtimes	
Creating powerful presentation	\boxtimes	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes	
Use of internet capabilities and searching engines	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes		
Creating Data Base		\boxtimes	\boxtimes						\boxtimes	
Computer programming language	\boxtimes	\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes
Photo manipulation		\boxtimes		\boxtimes			\boxtimes		\boxtimes	
Introduction to Data frequency analysis	\boxtimes	\boxtimes		\boxtimes		\boxtimes			\boxtimes	

Learning and Teaching Methods-ILOs

Learning and Teaching					_	e and ding		Intellectual skills	Practic al	Transferab le
Methods	A 1	A 2	A 3	A 4	A 5	A 6	A 7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical classes								Х	Х	Х
Assignments						Х				Х

Assessment Methods-ILOs

Contents					dge tanc	and ling		Intellectual skills	Practic al	Transferab le
	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1
Written	Х	Х	х	Х	Х		Х			
Practical									Х	
Examinati								X		X
on										
Semester work						Х		Х		Х

Course Title	Essay and	Research							
Course Code	24096	24096							
Academic Year	2014/2015	5							
Coordinator	Prof. Abde	el Fattah A. Zalat							
Other Staff	All Geolog	All Geology Staff							
Level	Graduate-	Graduate-M. Sc.							
Semester	Two Seme	sters							
Pre-Requisite									
Course Delivery	Tutorial	Tutorial setting with the supervisor: 14 x 2h							
		At least once every 2 weeks							
Parent	Geology D	Department							
Department									
Date of Approval	Septembe	r, 2014							

1. Aims

By the end of this course, students will be able to:

- 1) Develop geologic approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements.
- 2) apply geologic facts and theories to analyze and interpret practical geologic data
- 3) Collect, analyze, and present data using appropriate format and techniques.
- 4) Postulate concepts and choose appropriate solutions to solve problems on scientific basis.
- 5) Use effectively information technology and the software packages relevant to the geological problems.
- 6) Adopt self and long life-learning and participate effectively in research activities.

2. Intended Learning Outcomes

A. Knowledge and understanding:

Upon successful completion of this course the students should acquire knowledge and an understanding of:

A1) theoretical bases, procedures and techniques used for geological field studies and related laboratory analysis.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Develop the capability of interpretation and analysis of geologic data.
- B2. Assume a range of ideas to solve different geological problems.
- B3. recognize and differentiate between the published geological data

C. Professional and practical skills:

C1. Apply scientific ethics for accuracy during reporting.

- C2. Employ the geologic bases to meet community needs.
- C3. Investigate previous work and references.

D. General and transferable skills:

- D1. Use information and communication technology effectively.
- D2. Identify roles and responsibilities, and their performing manner.
- D3. consider community linked problems
- D4. Acquire self-and long life-learning.
- D5. Apply scientific models and systems effectively.
- D6. Deal with scientific patents considering property right.

3. Contents

This module is given over two semesters with no fixed programme. It will give students the opportunity to develop their written communication skills by being given practice at obtaining information from a variety of sources, organizing and presenting it as a cogent argument.

4. Teaching and Learning Methods

- Small group tutorials (1 member of staff to 1-5 students, usually following the same or related programs). 4 sessions per semester. Students tutored by different staff members in the two semesters to ensure diversity of styles and experiences. Required to write an assessed essay over the 2 semesters and to undertake preparatory work as required by the tutor.
- Students are encouraged to devote private study time to reading from a collection of general texts held in the library and to be aware of current developments via the popular scientific press.
- Supervision: The level of contact between students and supervisors during project work will vary across the different disciplines in the Faculty but all students are required to maintain regular contact with the supervisor. This is the student responsibility. Student should note that they are required to meet with the supervisor at least once every two weeks during the semesters to discuss progress. Student may, of course, make an appointment to see his supervisor at any time. Students who fail to make regular contact with the Supervisor will be reported to the Coordinator of Teaching. Students should remember, the supervisor is also his personal tutor with whom he should raise any issues of concern which may be affecting his work.

5. Student Assessment

There are three parts to the assessment of the project:

- 1. Essay Structure: 5000 words (50% awarded by supervisor and second assessor): Project report in the style of a scientific paper and supervisors mark, reflecting student effort, commitment and input to project plus team-working skills where appropriate.
- 2. Student conducts (20% awarded by supervisor): Student portfolio on the review of the literature pertinent to project area.
- 3. Seminar (30% awarded by supervisor and second assessor): oral presentation to peers and academic staff.

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Oral Assessment	KU, I	Assessment Session	Term Final	30%
Student portfolio	KU. I	Continuous		50%
Student portiono	KU, I	Assessment		30%
Seminar	P, T	Assessment Session	Term Final	20%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Initially, students are provided with a limited number of references relating to their subject area, but then are expected to search the literature on their own.

Recommended Books:

- Day R. A. 1986: How to write and publish a scientific paper. Cambridge University Press, Fourth Edition.
- Master, PA. 1986: Science, Medicine and Technology: English grammer and technical writing. Prentice-OHall, Inc., Engllewood Cliffs, New Jersey 07632.

Web sites:

- www.thomsonrights.com

7. Facilities required for teaching and learning

- Library
- Web Searching

	Course Coordinator	Head of Department
Name	Prof. Abdel Fattah A. Zalat	Prof. Abdel Fattah A. Zalat
Name (Arabic)	أ. د. عبد الفتاح علي زلط	أ. د. عبد الفتاح علي زلط
Signature		
Date	/9/2014	/9/2014

M.Sc. Programme of Paleontology & Stratigraphy

A. Programme Specification

Master of Paleontology and Stratigraphy
Master of Paleontology and Stratigraphy
Geology Department
Faculty of Science - TU
Tanta University
Prof. Mahmoud F. Mohamed
Prof. Salah N. Ayad, professor of geology,
Faculty of Science, Mansura University
Academic Reference Standards (ARS)
Every year in September
Internal Periodic Review, Summer 2014
September, 2014

1. Aims

- 1) To provide a deep theoretical background in the soft rocks and their economic materials.
- 2) To offer an understanding of how they can be applied in a laboratory management context, development of the natural resources and protection environment.
- 3) To motivate in graduates the culture of lifelong learning and continuing professional development and an appreciation of the value of science to society.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A4. biota of the earth through time; including the essential fauna occupied the land, systematic, morphology, development, evolution, ecology, stratigraphic range and geological significance of different phyla (palaeo).
- A5. Stratigraphic laws, classifications and correlation the rock units (chronostratigraphy and geochronology) and sequence stratigraphy.
- A6. Types of sediments and sedimentary rocks, and know the common sedimentary structures and their origin, and different types of sedimentary environments.
- A7. Natural resources in soft rocks as; oil, gas, wateretc.
- A8. Scientific research, ethical characters of the work and the important scientific awareness.

B. Intellectual skills:

They will also acquire the ability to:

- B9. Apply subject knowledge and understanding soft rocks to address familiar and unfamiliar problems related to earth history.
- B10. Formulate a hypothesis, plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.
- B11. Construct reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.
- B12. Integrate theoretically and practically.

C. Professional and practical skills:

- C10. Record, collate, analyse and report data of laboratory and field investigations.
- C11. Undertake laboratory and field investigations in a liable, safe and ethical manner.
- C12. Plan and conduct various forms of laboratory and field investigations in specific, precise and accurate manner.

D. General and transferable skills:

- D14. Communicate about a subject clearly, confidently and effectively using a range of presentational techniques.
- D15. Apply numerical and IT skills with confidence and accuracy.
- D16. Work both independently and in collaboration with others.
- D17. Take responsibility for self-managed learning and personal/professional development.

3. Academic standards

3.A External references for standards (Benchmarks):

Academic Reference Standards (ARS)

3.B Comparison of provision to external references:

Academic Reference Standards(ARS).

3. Academic Reference Srandards:

The Academic Reference Standards for the program of the M.SC. degree in Paleontology and Stratigraphy as well as the attributes and capabilities of the graduates were based essentially on the **General Academic Reference Standards (ARS) of graduate studies** published by the National Authority for Quality Assurance and Accreditation of Education (NAQAAE 2009). The following Specific Academic Standards for the Master Degree in Paleontology and Stratigraphy are adopted and were approved by the Faculty Council in 20/11/2012

Specific Academic Reference Standards

3.1 Graduate Attributes

The postgraduates of M.Sc. in Paleontology and Stratigraphy must have been prepared for:

- 1.1 Systematic understanding and critical awareness of topics in the area of paleontology and stratigraphy.
- 1.2 Problems of routine nature, which are generally adequately solved.
- 1.3 Generic skills, which are appropriately developed by professional practices.
- 1.4 Advanced studies in the area of paleontology and stratigraphy to support research work.
- 1.5 Information gathering, evaluation of published information, critical analysis of data.
- 1.6 Field and experimental work is carried out independently in a reliable and efficient manner.

3.2. Knowledge and Understanding

By the end of the M.Sc. program, the postgraduate students must be able to acquire knowledge and understanding of:

- 2.2 In-depth knowledge of the core themes of paleontology and stratigraphy.
- 2.2 Different important procedures and techniques used in the field of paleontology and stratigraphy analyses.
- 2.3 The ethics and bases of scientific research in general and that of the paleontology and stratigraphy research in particular.
- 2.4 Theories of paleontology and stratigraphy sciences and broaden his/her scope of theories of other interdisciplinary fields.

3.3. Intellectual Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 3.1- Use the knowledge of the paleontology and stratigraphy.
- 3.2- Differentiate geophysical problem-solving procedures and techniques.
- 3.3- Identify and analyze problems critically, set priorities and make professional decisions.
- 3.4- Develop a scientific technical planning based on sufficient paleontology and stratigraphy field observations.
- 3.5- Test and analyze hypotheses in the field of paleontology and stratigraphy and deal with relevant to problems.

3.4. Practical and Professional Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

4.1- Digest, critically evaluate and present paleontology and stratigraphy research.

- 4.2- Appreciate kinds of data limitation and accuracy.
- 4.3- Write professional reports efficiently.
- 4.4- Create plans to maximize the quality of the paleontology and stratigraphy analytical performance.
- 4.5- Evaluate resources of data in paleontology and stratigraphy research and renovate them.

3.5. General and Transferable Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 5.1- Attain an independent learning technique for a lifetime, professional career development in the field of paleontology and stratigraphy.
- 5.2- Work out paleontologically and stratigraphyically-based initiative plans and deal with stress and time management.

One Year

- 5.3- Communicate verbally and exchange the results and information successfully.
- 5.4- Use information and communication technology.

4. Curriculum Structure and contents:

Programme duration

4.A

4.B Programme structure 4.B.1 Number of contact hours per Week: First term: Lectures 14 Lab. 1 Total Second term: Lectures 14 Lab. 1 Total 14 Overall Contact hours Lectures 28 Lab. Total 28 Non 4.B.2 Number of contact hours Compulsory Optional 28 None Optional 4.B.3 Number of credit hours of specialized courses No. % 100

4.B.4 Number of contact hours of courses of soc	4.B.4	Number	of contact	hours of	courses of	of social
---	-------	--------	------------	----------	------------	-----------

	sciences and humanities:	No.	-	%	-
4.B.5	Number of credit hours of other courses:	No.	-	%	-

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Exer.	Program ILOs Covered
Code	Three of the first six courses are obligatory		Hours		
1421	Paleontology	2	ı	ı	
1422	Stratigraphy	2	ı	ı	
1423	Geotectonics	2	-	ı	
1424	Field Geology	2	-	-	
1425	Sedimentation and Correlation	2	-	-	
1426	Petroleum Geology and Hydrogeology	2	ı	ı	
1427	Essay	2	-		
1428	Statistics	1	-	-	
1429	Computer	1	1	1	

6. Programme admission requirements

The applicants must have obtained a Bachelor's degree, or its equivalent, in Geology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders (Employers)	Not applied yet	
4. External Evaluator(s) (External Examiner(s))	Prof. Salah N. Ayad	

Thesis

The thesis of M.Sc. in Paleontology and Stratigraphy is a formal written document representing sustained research contributes to the accumulated understanding of the Paleontology and Stratigraphy field. Throughout the preparation of the thesis student demonstrate in-depth, specialist knowledge and sophisticated understanding of concepts, information and techniques at the forefront of the discipline; exhibit mastery in the exercise of intellectual abilities including theoretical and practical skills; take a proactive and self-reflective role in working and to develop professional relationships with others; proactively formulate ideas and hypotheses; evaluate current issues; develop, implement and execute plans meeting deadlines and to employ IT and library resources appropriately

Responsibility for different phases in the preparation and checking of a graduate thesis rests jointly with the student, the members of supervision committee and the graduate office. The supervision committee may control of the following:

- 1. Thesis divisions and their order
- 2. Terminology for the division
- 3. The arrangement of reference material.

A graduate thesis is a permanent evidence of contribution made by students in particular field of knowledge and should reflect credit on the University as well as on the students. Student has a duty to present findings not only with precision, but also intelligently and attractively. A thesis must include all the significant results obtained and must disclose all the methods and processes employed in research in such a detail that the work may be repeated by anyone skilled in the field. The student should be scrupulously careful to give references to all the work on which the thesis depends directly or significantly. Good usage requires documentation of statements whenever possible by reference to published and unpublished.

The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors)
- Table of contents
- Introduction, containing a definition of the thesis statement and the aim.
- Literature review.
- Materials and methods.
- Results.
- Discussion and conclusions
- References.

Language of the thesis:

• The thesis is written in English accompanied by a summary in Arabic.

One accepted paper is required

• Before the thesis can be presented for granting the M.Sc. degree, at least one accepted paper is required

Apply the thesis to the Department Council

• With the approval of the thesis by the supervision committee, the student can apply the thesis to the Department Council.

Examiners Committee

• The examiners committee is selected by Geology Department Council. The M.Sc. Degree is awarded to the applicant by Tanta University Council, upon the recommendation of the department and the Faculty Council.

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place.

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place.

Name	Signature			
Programme Coordinator: Prof. Abdelfattah Ali Zalat أ. د. عبدالفتاح على زلط		/9/2014		
Head of Quality Assurance Unit: Prof. Hoda Kamal El-Sayied أ.د. هدى كمال السيد		/9/2014		
Dean of the Faculty: Prof. Tarek Abd elmoniem Fayed أ.د. طارق عبد المنعم فايد		/9/2014		

Programme Contents - Programme ILOs Matrix

		Programme outcomes ILOs														
Courses	Knowledge and Understanding			Intellectual			Practical			Transferable						
	A1	A2	А3	A4	A5	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3	D4
1421 Paleontology								\boxtimes		\boxtimes			\boxtimes	\boxtimes		
1422 Stratigraphy		\boxtimes				\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes		
1423 Geotectonics			\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes
1424 Field Geology		\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes
1425 Sedimentation and Correlation			\boxtimes			\boxtimes	\boxtimes				\boxtimes			\boxtimes	\boxtimes	
1426 Petroleum Geology and Hydrogeology				\boxtimes			\boxtimes	\boxtimes			\boxtimes			\boxtimes		
1427 Essay					\boxtimes			\boxtimes	\boxtimes			\boxtimes				
1428 Statistics									\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
1429 Computer									\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes

Course Title	Paleontology					
Course Code	1421					
Academic Year	2013/2014					
Coordinator	Prof. Mahmoud F. Moh	amed				
Other Staff	Prof. Abdelfattah A.	Prof. Abdelfattah A. Zalat				
Level	Graduate-M. Sc.					
Semester	Semesters One and Two					
Pre-Requisite	B.Sc. Geology	B.Sc. Geology				
Course Delivery	Lecture	28 x 2h lectures				
Parent	Goology Donartmont					
Department	Geology Department					
Date of	September, 2014					
Approval	September, 2014					

1. Aims

This module is in two halves.

- 1) The first half aims to gain knowledge of the classification scheme of the animals, international nomenclature code of biota, the essential fauna lived on the earth through time, and their development, evolution, ecology, stratigraphic range and geological significance.
- 2) The second half aims to understand applied micropaleontology as well as the value of foraminifera, calcareous nannoplankton, ostracods, pollen and spores in oil exploration.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. main fauna occupied the earth through time and their development.
- A2. index fossils of the different geological periods, and the scientific methods for collecting and separating taxa in the field and laboratory.
- A3. paleoenvironment and paleoecology prevailed in the earth through geological times.

B. Intellectual skills:

They should also acquire the ability to:

- B1. Discriminate between different fossils (faunas & floras)
- B2. How to think and interpret biostratigraphical problems
- B3. Solve a complicated biostratigraphical problem in a good manner by using more than one tool.

an area.

D. General and transferable skills:

They should also acquire the ability to:

- D1.Make scientific communications and discussions with other paleontologists.
- D2. Use IT in proper way.
- D3. Work independently and in a team.
- 3. Contents

Part - 1	Paleontology (Macropaleontology) (An hour / week)						
Lectures 1-4	Geological significance of Phylum Porifera						
Lectures 5-7	Geological significance of Phylum Cnidaria						
Lectures 8-10	Geological significance of Phylum Arthropoda, class Trilobite						
Lectures 11-13	Geological significance of Phylum Mollusca						
Lectures 14-17	Geological significance of Phylum Brachiopoda						
Lectures 18-21	Geological significance of Phylum: Echinodermata						
Lectures 22-24	Geological significance of Phylum Hemichordata, class Graptolithina						
Lecture 25-28	Paleoecology & paleoenvironment						
Part - 2	Paleontology (Micropaleontology) (An hour / week)						
Lectures 1-3	Classification and Stratigraphic importance of foraminifera						
Lectures 4-7	Paleoecology of foraminifera						
	Calcareous nannoplankton						
Lectures 16-20	Ostracoda						
Lectures 21-28	Diatoms						
Lectures 25-28	Pollens and spores						

Weeks 29,30 Assessment

4. Teaching and Learning Methods

- Lectures
- Internet and library search
- Writing Reports
- Field Trips
- Assessments

5. Student Assessment

* * * * * * * * * * * * * * * * * * * *									
Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion					
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%					

*KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Clarkson E. Invertebrate paleontology and evolution. Blackwell Science, Oxford 1998. (For Paleontology Course)
- Haq B. and Boersma A. (1978): Introduction to marine micropaleontology.. (For Micropaleontology Course)

Recommended Books:

- Doyle P. Understanding fossils; an introduction to invertebrate paleontology. Wiley, Chichester, UK 1996. (For Paleontology Course)
- Benton M. & Harper D. Basic paleontology. Addison Wesley, Longman 1997. (For Paleontology Course)
- Milsom C. & Rigby S. Fossils at a glance. Blackwell 2005. (For Paleontology Course)
- Braiser, D. & Boersma, M. (1980): Microfossils. (For Micropaleontology Course)
- Raup, D. and Stanley, S. (1975): Principles of paleontology. (Paleontology Course)
- Haynes, J. (1981): Foraminifera. (For Micropaleontology Course)

Periodicals, Web sites:

- Journal of Paleontology
- Palaeontology

- Journal of Micropaleontology
- http://www.nhm.ac.uk
- http://www.usgs.gov/

7. Facilities required for teaching and learning

- Video Projectors
- Computer Presentations and Writing Boards
- Binocular Microscope,
- Hand specimens
- Field trips
- Library

	Course Coordinator	Head of Department
Name	Prof. Mahmoud F. Mohamed	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. محمود فارس محمد	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

			Prog	ramme	out	comes	ILOs		
	Kn	owle	dge			_	_	_	
Courses	and Understanding			Intellectual			Trai	nsfer	able
				D4	-			-	52
	A1	A2	А3	B1	B2	В3	D1	D2	D3
Part – 1 P	aleor	ntology	(Macr	ropaleo	ntolo	gy)			
Geological significance of	\boxtimes	\boxtimes		\boxtimes			\boxtimes	\boxtimes	
Phylum Porifera									
Geological significance of	\boxtimes	\boxtimes		\boxtimes	\boxtimes				
Phylum Cnidaria									
Geological significance of	\boxtimes	\boxtimes		\boxtimes				\boxtimes	
Phylum Arthropoda	_]
Geological significance of Phylum Mollusca	\boxtimes	\boxtimes		\boxtimes				\square	
Geological significance of		\boxtimes		\boxtimes				\boxtimes	
Phylum Brachiopoda	$ \boxtimes $					Ш			
Geological significance of	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes	
Phylum: Echinodermata			Ш			Ш			
Geological significance of	\boxtimes	\bowtie		\boxtimes	П				
Phylum Hemichordata]			
Paleoecology &			\boxtimes			\boxtimes		$ \bowtie $	\boxtimes
paleoenvironment									
Part - 2 P	aleon	tology	(Micro	paleon	tolog	gy)			
Classification and	_	_		_					_
Stratigraphic importance of	\boxtimes	\boxtimes	Ш	\boxtimes	\boxtimes	Ш		Ш	\boxtimes
foraminifera									
Paleoecology of								_	
foraminifera				\boxtimes		\boxtimes		$ \sqcup $	
Calcareous nannoplankton					<u> </u>	_			
Ostracoda	\boxtimes	\boxtimes			Ш	Ш			
Diatoms	\boxtimes	\boxtimes		\boxtimes					\boxtimes
Pollens and spores	\boxtimes	\boxtimes		\boxtimes					\boxtimes

Learning and Teaching Methods-ILOs

	Programme outcomes ILOs											
Courses	Knowledg	e and Und	Inte	lle	ctual	Transferable						
	A1	A2	А3	B1	B2	В3	D1	D2	D3			
Lectures	х	Х	Х									
Internet and library search			Х			Х		Х				
Writing Reports		Х			Χ	Х						
Field Trips				Χ						Х		
Assignments				Χ	Χ	Х			Х			

Assessment Methods-ILOs

	Programme outcomes ILOs												
Courses	Knowledge and Understanding Intellectual Tran						ansf	sferable					
	A1	A2	А3			B1	B2	В3		D1	D2	D3	
Written Examination	Х	Х	Х			Х	Х						

Course Title	Stratigraphy	tratigraphy						
Course Code	1422	422						
Academic Year	2013/2014	013/2014						
Coordinator	Prof. Abdelfattah A.	Prof. Abdelfattah A. Zalat						
Other Staff	Dr. Hamza M. Khalil	r. Hamza M. Khalil						
Level	Graduate-M. Sc.	Graduate-M. Sc.						
Semester	Semesters One and To	NO						
Pre-Requisite	B.Sc. in Geology							
Course Delivery	Lecture	Lecture 28 x 2h lectures						
Parent Department	Geology Department	Geology Department						
Date of Approval	September, 2014							

1. Aims

By the end of this course, students will be able:

- 1) to gain knowledge about the basic principles of stratigraphy and its application in the exploration of mineral resources and oil investigation.
- 2) to determine the relative age of the rocks and their relationships.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. stratigraphic subdivisions and units.
- A2. stratigraphic laws, sequence stratigraphy, chronostratigraphy and geochronology.
- A3. geological events and development the area of study and their application in oil and ores explorations.

.B. Intellectual skills:

They should also acquire the ability to:

- B1. Use the available data to give reasonable interpretation of the geological history.
- B2. Predict the following events through some old events.
- B3. Try to link by recent events and its uses in interpreting the old ones.

D. General and transferable skills:

- D1. Make scientific communications and discussions with other paleontologists.
- D2. Use IT in proper way.
- D3. Work independently and in a team.

3. Contents

Lectures 1-4	Modern revolution in stratigraphy, traditional stratigraphy and new stratigraphic methods
Lectures 5-7	Stratigraphic-sedimentological database
Lectures 8-11	Litho and biostratigraphic units
Lectures 12-15	Basin mapping methods
Lecture 16-20	Unconformities
Lecture 21-23	Stratigraphic correlations
Lecture 24-25	Allostratigraphy, cyclostratigraphy, chemostratigraphy and event stratigraphy
Lectures 26-28	Sequence stratigraphy; principals and their applications
Weeks 29, 30	Assessment

4. Teaching and Learning Methods

- Lectures,
- Discussions,
- Exercises and case study,
- Reports and web-researches,
- Field Trips

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

*KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Friedman, G. 1992: Principles of sedimentary deposition: stratigraphy and Sedimentology. Macmillan Pub. Comp., USA, 717pp.

Recommended Books:

- Catuneanu, O. 2006. Principals of sequence stratigraphy. Elsevier, 375pp.
- Coe. Sea-Level changes 2005

- Miall A. M. 1990: Basic principals of basin analysis.

Periodicals, Web sites:

- Journal of Sedimentology
- Journal of Sedimentary Research
- PALAIOS

7. Facilities required for teaching and learning

- Video Projectors
- Computer Presentations and Writing Boards
- Field trips

	Course Coordinator	Head of Department
Name	Prof. Abdelfattah A. Zalat	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. عبد الفتاح على زلط	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

		Pr	ogramme ou	tcom	es IL	Os				
Courses	Knowle	dge and Un	derstanding	Inte	llec	tual	Transferable			
	A1	A2	А3	B1	B2	В3	D1	D2	D3	
Modern revolution in stratigraphy	\boxtimes			\boxtimes		\boxtimes	\boxtimes			
Stratigraphic- sedimentological database		\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes			
Litho and biostratigraphic units		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			
Basin mapping methods	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			
Unconformities			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes		
Stratigraphic correlations		\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Allostratigraphy		\boxtimes				\boxtimes		\boxtimes	\boxtimes	
Sequence stratigraphy	\boxtimes		\boxtimes			\boxtimes	\boxtimes		\boxtimes	

Learning and Teaching Methods-ILOs

	Programme outcomes IL						ILOs	5							
Courses	Know	ledge a	and Un	derstanding	Int	ell	ecti	ıal	Transferable			ole			
	A1	A2	А3		В1	B2	В3		D1	D2					
Lectures	Х	Х	Х												
Discussions		Х			Х				Χ						
Exercises and case study					Х	Х	Х								
Reports and web-researches		Х				Х	Х	·		Х					
Field Trips			Х												

Assessment Methods-ILOs

			Р	Programme outcomes ILOs									
Courses	Know	Knowledge and Understanding Intellectual Transferabl							ble				
	A1	A2	А3	A4	A5	B1	B2	В3		D1	D2	D3	D4
Written		V	V	V	V	_							
Examination	^	^	^	^	^	^							

Course Title	Geotectonics	Geotectonics					
Course Code	1423	423					
Academic Year	2013/2014	013/2014					
Coordinator	Prof. Mohamed Atef No	rof. Mohamed Atef Noweir					
Other Staff	Prof. Mahmoud H. Ash	rof. Mahmoud H. Ashmawy					
Level	Graduate-M. Sc.	Graduate-M. Sc.					
Semester	Semesters One and Tw	70					
Pre-Requisite	B.Sc. in Geology						
Course Delivery	Lecture	28 x 2h. lectures					
Parent	Geology Department						
Department							
Date of Approval	September, 2014						

1. Aims

By the end of this course, students will be able:

- 1) To provide a background for understanding the origin and significance of regional geological structures.
- 2) Allow the interpretation of the dynamic circumstances that give rise to deformation events.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire advanced knowledge and understanding of:

- A1. Plate motion and plate boundaries.
- A2. The origin of structural deformation.
- A3. The relation between the plate motions and crustal deformation.

B. Intellectual skills:

They should also acquire the ability to:

- B1. Use the available data to give reasonable interpretation for the deformations of the rocks.
- B2. Predict the global kinematics.
- B3. Demonstrate how structures and deformation may be related to large-scale earth processes.

D. General and transferable skills:

D1. Join a research-group and sharing ideas.

- D2. Deliver seminars, lectures, workshops and write reports.
- D3. Work in a team and independently.

3. Contents

Lectures 1, 2	Historical perspective	
Lectures 3-5	Structure and composition of the Earth interior	
Lectures 6-8	Subduction zones, seismic zones, island arc and volcanism	
Lectures 9-11	Rift zones, triple junctions, aulacogens	
Lectures 12-13	Tectonic framework of Egypt	
Lecture 14-17	Global tectonics	
Lecture 18-20	Inversion Tectonics	
Lecture 21-23	Sedimentary basins	
Lectures 24-26	Physical resources of the ocean	
Lectures 27-28	Plate tectonics and hydrocarbon accumulation	

Weeks 29,30 Assessment

4. Teaching and Learning Methods

- Lectures,

- Discussions,
- Exercises and case study,
- Reports and web-researches,
- Field Trips

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

*KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Kearey, P. and Vine, F. 1996: Global tectonics. 2nd edition.

Recommended Books:

- Said, R.1990: The geology of Egypt. 734 p.

Periodicals, Web sites:

- Journal of Tectonics
- Journal of Tectonophysics
- Journal of Structural geology
- Annals of the geological survey of Egypt

7. Facilities required for teaching and learning

- Video Projectors
- Computer Presentations and Writing Boards
- Field trips
- Museum Models
- Library

	Course Coordinator	Head of Department	
Name	Prof. Mohamed Atef Noweir	Prof. Abdel Fattah A. Zalat	
Name (Arabic)	أ. د. محمد عاطف نوير	أ. د. عبد الفتاح على زلط	
Signature			
Date	/9/2014	/9/2014	

Course Contents - Course ILOs Matrix

		Co	ourse outc	omes	ILOs				
Contents	Knowledge a	nd Under	standing	Inte	ellect	ual	Tra	nsfera	able
	A1	A2	А3	B1	B2	В3	D1	D2	D3
Historical perspective		\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes	
Structure and composition of the Earth interior					\boxtimes		\boxtimes		\boxtimes
Subduction zones		\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes
Rift zones, triple junctions	\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	
Tectonic framework of Egypt	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
Global tectonics	\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes
Inversion Tectonics	\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	
Sedimentary basins					\boxtimes		\boxtimes	\boxtimes	\boxtimes
Physical resources of the ocean					\boxtimes	\boxtimes	\boxtimes		
Plate tectonics and hydrocarbon accumulation			\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

			Р	rogramme ou	tcor	nes	ILOs					
Courses	Know	ledge	and Ur	nderstanding	Int	ell	ectu	al	Tra	ansf	eral	ole
	A1	A2	А3		В1	B2	В3		D1	D2	D3	
Lectures	Х	Х										
Discussions		Х							Х			
Exercises and case study			х		х	Х	х					
Reports and web- researches						Х				Х		
Field Trips			Х				Χ				Х	

Assessment Methods-ILOs

			Р	rogramme	e out	cor	nes	ILOs					
Courses	Knowl	edge a	nd Un	derstand	ding	Int	elle	ectu	al	Tra	ansf	era	ble
	A1	A2	А3			B1	B2	В3		D1	D2	D3	D4
Written Examination	Х	Х	X			Χ							

Course Title	Field Geology						
Course Code	1424						
Academic Year	2013/2014						
Coordinator	Prof. Gaafer A. Bahary	ia					
Other Staff	Prof. Mahmoud H. As	hmawy					
Level	Graduate-M. Sc.	Graduate-M. Sc.					
Semester	Semester One and Tw	0					
Pre-Requisite	B. Sc. In Geology						
Course Delivery	Lecture	28 x 2h lectures					
Parent Department	Geology Department						
Date of Approval	September, 2014						

1. Aims

This module aims to demonstrate appropriate field skills for the students, interpret rock outcrops and other forms of surface and subsurface data with appropriate assessments of uncertainly. Also introduce an overview of high and low land geology and surface processes.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Relationships between surface geologic features.
- A2. Pertinent data rock outcrops and surface features.

B. Intellectual skills:

By the end of the course the students should be able to:

- B1. Use the knowledge of the Paleontology and stratigraphy.
- B2. Differentiate Paleontology and stratigraphy problem-solving procedures and techniques.
- B3. Identify and analyze problems critically, set priorities and make professional decisions.
- B4. Develop a scientific technical planning based on sufficient Paleontology and stratigraphy field observations.
- B5. Test and analyze hypotheses in the field of Paleontology and stratigraphy and deal with relevant to problems.

D. General and transferable skills:

D1. Conduct appropriate scientific communication.

D2. Make use of IT.

D3. Work independently and in a team.

3. Contents

Lectures 1	Introduction
Lectures 2-4	Field evidences and significances
Lectures 5,6	Recent orientations of mapped-geo-items
Lectures 7-9	Recent trends in sampling and field mapping
Lecture 10-12	A problematic point of field observations and their interpretation in the field
Lecture 13	Mid-Term Exam
Lectures 14-16	Contact types and their field criteria
Lectures 17-19	Field measurements using recent techniques
Lectures 20-22	Surficial and subsurface mapping techniques
Lectures 23-28	How to write a short-term and/or extending geological report as well.
	Revision

Weeks 29,30 Assessment

4. Teaching and Learning Methods

- Lectures,
- Discussions,
- Exercises and case study,
- Reports and web-researches,
- Field Trips

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

*KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Bevier, M.L. 2005: Introduction to field geology.

Recommended Books:

- Compton, 1985: Geology in the field.
- Barnes, 1995: Basic geologic mapping.

Periodicals, Web sites:

- Journal of Petrology
- Journal of Sedimentary Petrology
- Journal of Structural geology

7. Facilities required for teaching and learning

- Computer, data show and software.
- Field geology instruments.
- Lab. Instruments and drawing tables (Ex. Light tables).

	Course Coordinator	Head of Department
Name	Prof. Gaafer A. Baharyia	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. جعفر عبدالعليم بحرية	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

			Pro	gran	nme	outc	omes	ILOs	;		
Courses		rledge nd tandin	g		Inte	llec	Transferable				
	A1	A2		B1	B2	В3	B4	B5	D1	D2	D3
Introduction	\boxtimes			\boxtimes	\boxtimes				\boxtimes		
Field evidences		\boxtimes		\boxtimes	\boxtimes		\boxtimes				\boxtimes
Recent orientations of mapped-geo-items	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes				\boxtimes
Recent trends in sampling	\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			
A problematic point of field observations	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes		
Mid-Term Exam	\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes
Contact types and their field criteria	\boxtimes					\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Field measurements using recent techniques	\boxtimes	\boxtimes					\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Surficial and subsurface mapping techniques	\boxtimes						\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

			Pro	ogramme	ou	tco	me	s IL	.Os					
Courses	Knowl	edge ar	nd Und	erstand	ing	In	tel	lec	tu	al	Tra	ansi	eral	ole
	A1	A2				В1	B2	В3	В4	В5	D1	D2	D3	
Lectures	Х	Х				Χ								
Discussions		Х					Х				Χ			
Exercises and case study								х						
Reports and web- researches							Х			Х		Χ		
Field Trips		Х						Х	Χ	Χ			Χ	

Assessment Methods-ILOs

			Р	rogram	me out	tcor	nes	ILO	S				
Courses	Knowl	edge a	nd Un	dersta	nding	Int	elle	ecti	ıal	Tra	ansf	era	ble
	A1	A2				В1	B2	В3	B4	D1	D2	D3	D4
Written Examination	Х	Х				Х	Х						

Course Title	Sedimentation and Corre	lation
Course Code	1425	
Academic Year	2013/2014	
Coordinator	Prof. Abdel-Monem T.	Abdel-Hameed
Other Staff		
Level	Graduate-M. Sc.	
Semester	Semesters One and Tw	0
Pre-Requisite	B.Sc. in Geology	
Course Delivery	Lecture	28 x 2h. lectures
Parent	Geology Department	
Department		
Date of Approval	September, 2014	

1. Aims

This course aims to learn about sequences of sedimentary rocks and how they may be correlated, or traced between outcrops.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this course students should acquire knowledge and understanding of the underlying concepts and principles of:

- A4. Sequence of stratigraphy.
- A5. Different types of correlation.
- A6. Meaning of sequence stratigraphy.
- A7. Use of correlation.

B. Intellectual skills:

They should also acquire the ability to:

- B4. Differentiate between the different types of correlation.
- B5. Correlate sea level changes and sequence stratigraphy.

D. General and transferable skills:

- D4. Conduct scientific discussions and write reports.
- D5. Develop computer skills and work with the webs.
- D6. Work independently and in a team.

3. Contents

Lectures 1-4	Stratigraphical procedures
Lectures 6-9	Facies concept
Lectures 10-14	Basics of correlation
Lectures 15-20	Seismic stratigraphy
Lectures 21-23	Changing seal-levels
Lectures 24-28	Cycles and sequences

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures,
- Discussion, Presentation
- Reports and term papers,
- Computer modeling, Web searching
- Assignments.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

^{*}KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

Holland, C. 1978: A guide to Stratigraphical procedure. Geol. Soc. Lond.
 Spec. Rep. no. 10.

Recommended Books:

- Vail, P. 1977: Stratigraphical interpretation of seismic reflection patterns in depositional sequences.
- Payton, C.: Seismic stratigraphy- Application to hydrocarbon exploration. A.A.P.G. Mem. 26: 99-116.

Periodicals and Web sites:

- Journal of Sedimentology
- Journal of Stratigraphy

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computer Presentations and Writing Boards
- Commercial computer packages: Microsoft package.
- Simulation Lab.
- Field trips

	Course Coordinator	Head of Department
Name	Prof. Abdelmonem T. Abdelhameed	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. عبدالمنعم توفيق عبدالحميد	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

				Course	e outco	mes ILO	Os				
Contents	Know	ledge a	and Un	dersta	nding	Intelle	Transferable				
	A1	A2	А3	A4		B1	B2	D1	D2	D3	
Stratigraphical procedures								\boxtimes	\boxtimes		
Facies concept	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes			
Basics of correlation	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes			
Seismic stratigraphy	\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes			
Changing seal- levels			\boxtimes			\boxtimes		\boxtimes	\boxtimes		
Cycles and sequences		\boxtimes						\boxtimes	\boxtimes		

Learning and Teaching Methods-ILOs

	Programme outcomes ILOs															
Courses	Knowl	edge aı	nd Und	erstand	ding	Int	ell	ec	tua	ı	Practi	cal	Tra	ansf	eral	ole
	A1	A2	А3	A4		B1	B2						D1	D2	D3	
Lectures	х	х	х			Х										
Discussions, presentation							Х						Х			
Reports and term papers				Х											Х	
Computer modeling, Web searching							Х							х		
Assignments						Х	Χ								Χ	

Assessment Methods-ILOs

		Programme outcomes ILOs														
Courses	Know	Knowledge and Understanding						Intellectual				cal	Transferable			
	A1	A2	А3	A4		B1	B2			C1	C2	C3	D1	D2	D3	D4
Written	v	>	v	v		Х	Х									
Examination	^	^	^	^		^	^									

Course Title	Petroleum Geology								
	Hydrogeology								
Course Code	1426								
Academic Year	2013/2014								
Coordinator	Prof. Nader H. El Ge	rof. Nader H. El Gendy							
Other Staff	Prof. Mohamed G. A	Prof. Mohamed G. Atwia; Dr Shadya Abdel-Reheem; Dr Zenhom							
Other Stair	E. Salem								
Level	Graduate-M. Sc.								
Semester	Semesters One and	Two							
Pre-Requisite	B. Sc. Geology								
Course Delivery	Lecture	28 x 2h lectures							
Parent	Coology Donortmon								
Department	Geology Department								
Date of Approval	September, 2014								

1. Aims

This module is in two halves. The first half aims to enable student to gain knowledge about the main approach of petroleum geology including generation, migration, subsurface environment, hydrocarbon traps and hydrocarbon provinces in Egypt. The second half aims to gain a much more knowledge and understanding of main approach of Hydrogeology. In addition, give rise to many applications for working in the industry.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Economic importance of petroleum, maturation of organic matter and its role in petroleum formation.
- A2. Influence of the porosity and permeability on the accumulation and distribution of petroleum.
- A3. Movement of water and contaminants in the subsurface, geochemistry of groundwater, interpretation of hydraulic and chemical data.
- A4. Groundwater exploration, isotope hydrology, groundwater pollution and remediation.

B. Intellectual skills:

They should also acquire the ability to:

- B1. Estimate the porosity values and types and detect the approximated reservoir rocks and the possible traps in the area.
- B2. Measure the source rock maturity and estimates the pathways of the migrating oil.

- B3. Apply groundwater flow equations to determine aquifer response to groundwater pumping.
- B4. Interpret hydrocarbon and hydrogeologic data.

C. Professional and practical skills:

- C1. Design cross sections indicating traps and reservoir rocks.
- C2. Evaluate the presence of hydrocarbon in the rock formation and characterize the reservoir rocks.
- C3. Train M. Sc students in the proper use of the hydrochemical analysis equipments (TDS, E.C., PH, Flame photometer, Spectrophotometer).

D. General and transferable skills:

- D1. Use computer programmes for interpretation and modeling.
- D2. Make scientific communications and discussions with others.
- D3. Use IT in self-learning.
- D4. Work independently and in a team.

3. Contents

Part - 1	Petroleum geology (An hour/ week)
Lectures 1-4	Generation of petroleum
Lectures 5-8	Reservoir rocks
Lectures 9-12	Porosity and permeability
Lectures 13-17	Hydrocarbon migration
Lectures 18-20	Petroleum traps
Lectures 21-23	Subsurface environment
Lectures 24-25	Production method
Lectures 26-28	Petroleum provinces in Egypt
Part - 2	Hydrogeology (An hour / week)
Lectures 1-3	Groundwater Investigations

Lectures 4-6 Pumping Test Analysis

Lectures 7-9 Groundwater Flow theory

Lectures 10-14 Natural Hydrochemistry

Lectures 15-20 Groundwater Pollution

Lectures 21-25 Groundwater Modelling

Lectures 26-28 Hydrogeology of Egypt

Weeks 29,30 Assessment

4. Teaching and Learning Methods

- -Lectures
- -Internet and library search
- Writing Reports
- Field Trips
- Assessments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

^{*}KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Selley, R. 1985: Elements of petroleum geology. New York: W. H. Freeman.
- Leversen, A. 1967: Geology of petroleum, 2nd Ed. San Francisco: W. H. Freeman.
- Fetter, C. W. 2000: Applied Hydrogeology, 4th Ed.
- Todd, D. K. and Mays, L. W. 2004: Groundwater Hydrogeology, 2nd Ed.

Recommended Books:

- Link, P. 1982: Basic petroleum geology. Tulsa, Oklahoma: Oil & gas consultants. Internatonal, Inc.
- Domenico, T. A. and Schwartz, F. W. 1997: Physical and Chemical Hydrogeology. 2nd Ed.
- Appelo and Postma 2005: Geochemistry, Groundwater and pollution. $2^{\text{nd}}\ \text{Ed}$.

Periodicals, Web sites:

- AAPG Bulletin
- Journal of Geophysical Research
- Journal of Hydrogeology
- Journal of Groundwater
- http://www.petroskills.com

7. Facilities required for teaching and learning

- TDS meter, E.C., PH, Flame photometer (Hydrochemical lab.), Spectrophotometer.
- Computer programming for hydrochemical interpretation and groundwater modelling (hydrogeological software)

	Course Coordinator	Head of Department
Name	Prof. Nader H. El Gendy	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ. د. نادر حسنى الجندي	أ. د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

	Programme outcomes ILOs														
Courses			ledge a rstandi		Int	tell	ectu	ıal	Pra	acti	cal	Tr	ansf	eral	ole
	A1	A2	А3	A4	B1	B2	В3	B4	C1	C2	С3	D1	D2	D3	D4
			Par	t – 1 Petro	oleun	n ge	olog	Sy							
Generation of petroleum	\boxtimes				\boxtimes	\boxtimes			\boxtimes			\boxtimes			
Reservoir rocks						\boxtimes			\boxtimes			\boxtimes			
Porosity and permeabilit	\boxtimes	\boxtimes			\boxtimes	\boxtimes				\boxtimes	\boxtimes	\boxtimes			
Hydrocarbon migration	\boxtimes	\boxtimes			\boxtimes	\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Petroleum traps		\boxtimes		\boxtimes		\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Subsurface environme nt	\boxtimes			\boxtimes		\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes			
Production method	\boxtimes		\boxtimes	\boxtimes				\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes	
Petroleum provinces in Egypt	\boxtimes		\boxtimes							\boxtimes	\boxtimes				\times
		•	P	art – 2 Hy	drog	eol	ogy						•		
Groundwater Investigatio ns			\boxtimes				\boxtimes	\boxtimes							
Pumping Test Analysis							\boxtimes	\boxtimes					[]	× C	
Groundwater Flow theory											\boxtimes			X C	
Natural Hydrochemi stry				\boxtimes							\boxtimes				
Groundwater Pollution				\boxtimes			\boxtimes				\boxtimes				
Groundwater Modelling				\boxtimes			\boxtimes	\boxtimes			\boxtimes				
Hydrogeology of Egypt							\boxtimes	\boxtimes				\boxtimes			\times

Learning and Teaching Methods-ILOs

				Prog	ramn	ne ou	tcomes I	LOs			
Courses	Knowl	edge aı	nd Und	erstand	ding	Intel	lectual	Practical	Tra	nsfei e	rabl
	A1	A2	А3	A4		B1	B2		D1	D2	D3
Lectures	Х	х	Х			Х					
Discussions, presentation							Х		Х		
Reports and term papers				Х							Х
Computer modeling, Web searching							Х			Х	
Assignments						Х	Х				Х

Assessment Methods-ILOs

	Programme outcomes ILOs															
Courses		Knowledge and Understanding						Intellectua I					Transferabl e			
	A1	A2	А3	A4	E	31	B2		C	:1	C2	C3	D1	D2	D3	D4
Written Examinatio n	х	Х	х	х		х	х									

Course Title	Statistics								
Course Code	1638								
Academic Year	2013/2014	2013/2014							
Coordinator	Prof. Kadry Zaka	Prof. Kadry Zakaria Elsherbeny							
Other staff									
Level	Graduate-M. Sc.								
Semester	Semesters One and Two								
Pre-Requisite	B. Sc. Geology								
Course delivery	Lecture	28 x 1h lectures							
	Practical	-							
Parent	Mathematics Dep	partment							
Department		·							
Date of	September, 2014								
Approval									

1. Aims

This module aims to provide M. Sc. students in geology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific geological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A2. study design.
- A3. types of variables that are used in biological research.
- A4. sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B1. carry out confidently simple essential statistical methods in biological research and to interpret results.
- B2. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B3. summarize data using graphical and tabular data.
- B4. interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C1. select and apply appropriate basic statistical methods for analysis of data.
- C2. use GraphPad package in data analysis.

C3. tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D1. write report including graphical material.
- D2. present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D3. use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

- Lectures 1 Introduction: Variables and distributions.
- Lectures 2-3 Summarizing data.
- Lectures 4-5 Sampling variability of a mean.
- Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples.
- Lectures 8-9 ANOVA: Comparing more than two samples.
- Lecture 10 Examination.
- Lectures 11-12 Sampling variability of proportions.
- Lectures 13-14 Analysis of categorical data; comparing two proportions
- Lectures 15-16 Regression and correlation.
- Lectures 17-18 Comparing correlations and regression. Multiple regressions.
- Lectures 19-20 Regression and correlation: Computer applications.
- Lectures 21-22 Comparing distribution: Computer applications.
- Lectures 23-24 Comparing means: Computer applications.
- Lectures 25-26 Comparing variances: Computer applications.
- Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written	KII I	2 Hour Evamination	The 16 th	90%	
Examination	KU, I	3 Hour Examination	Week	90%	
Oral Assessment	KII I	Assessment	Term Final	5%	
Oral Assessifient	KU, I	Session	Term Final	376	
Semester work	KU, I	Continuous		5%	
		Assessment			

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill. *Recommended books*
 - Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
 - Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Kadry Zakaria Elsherbeny	Prof. Kadry Zakaria Elsherbeny
Name (Arabic)	أ. د. قدرى زكريا الشربينى	أ. د. قدرى زكريا الشربينى
Signature		
Date	/9/2014	/9/2014

Contents - Course ILOs Matrix

				Prograr	nme	out	come	es ILC)s					
Courses	Knowle	edge and	Under	standing	In	tell	ectu	al	Pra	acti	cal	Tra	nsfera	ble
	A1	A2	А3	Α4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introduction			\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes	\boxtimes	\boxtimes	
Summarizing data					\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes		
Sampling variability of a mean			\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes			\boxtimes		
Analysis of quantitative data					\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		
ANOVA	\boxtimes				\boxtimes	\boxtimes		\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Sampling variability of proportions			\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Analysis of categorical data						\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Regression and correlation							\boxtimes	\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing correlations							\boxtimes	\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes
Regression and correlation		\boxtimes					\boxtimes	\boxtimes		\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing distribution	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes
Comparing means		\boxtimes			\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	
Comparing variances	\boxtimes	\boxtimes								\boxtimes	\boxtimes		\boxtimes	\boxtimes
Design of experiments			\boxtimes								\boxtimes		\boxtimes	\boxtimes

Learning and Teaching Methods-ILOs

		Programme outcomes ILOs													
Courses	Knowle	nowledge and Understanding Intellectual Practical							Transferable						
	A1	A2	А3	A4		В1	В2	В3	В4			D1	D2	D3	
Lectures	Х	Х	Х			Х	Χ	Х				Х	Х		
private study				Х					х					Х	

Assessment Methods-ILOs

		Programme outcomes ILOs												
Courses	Knowle	Int	Intellectual			Practical			Transferable					
	A1	A2	А3	A4	B1	B2	В3	В4	C1	C2	C3	D1	D2	D3
Written	V	V	V	V	V	V								
Examination	X	Х	Х	Х	Х	^								
Oral							Х	Х					Х	
Assessment							^	^					^	
Semester								Х				Х		Х
work								_ ^				^		^

Course Title	Computer							
Course Code	1429							
Academic Year	2013/2014							
Coordinator	Prof. Mohamed E	Prof. Mohamed El-Awady						
Other Staff	Prof. Mahmoud Kamel; Prof. Qadry Zakaria							
Semester	Taught over 2 semesters							
Pre-Requisite	B.Sc.							
Course Delivery	Lecture	28 x 1h lectures						
	Practical	28 x 1h practical						
Parent	Computer Centr	Computer Centre						
Department								
Date of Approval	September, 201	4						

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- 7) Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- 8) Underpin academic work throughout postgraduate studies.
- 9) Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A8. The use of IT in the context of their postgraduate studies.
- A9. The diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A10. Necessary graphical, statistical and frequency analyses of different types of data.
- A11. Powerful presentation using sophisticated software packages.
- A12. Different internet resources.
- A13. Solution of scientific problems using computer programming.
- A14. Photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B3.Integrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

Weeks 29-30 Assessment

D3. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents	
Lectures 1-2	Methods for graphical representations, Data analysis and Data modeling
Lectures 3-4	Assignment 1: Using Application programs
	Calculation of Slope and intersection of lines ,
	Best fitting for data,
	Extracting Trend , and Equations for acquired data (linear –
Lectures 5-6	exponential- logarithmicetc)
Lectures 5-6	Statistical Data analysis
Lectures 7-9	Assignment 2: Using Application programs
	Apply some statistical function such as Average, Median, STDEV,
	and Correlation on a simulated data
Lectures10-11	Creating powerful presentation including charts, images, video,
	etc and different attractive animations
Lectures12-14	Assignment 3: Using PowerPoint program
	Design a real and powerful presentation with different acquired
	skills
Lectures15-17	Use of internet capabilities and searching engines
	Assignment 4: Using the Internet
	Life search on the internet for some real information
Lectures18-20	Creating Data Base and related Queries and Reports
	Assignment 5: Using Application programs
	Creating a real Data Base and apply different queries and reports
Lectures21-23	to extract useful information
Lectures21-23	Computer programming language
	Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language
Lectures24-26	Photo manipulation and enhancement using the photoshop
200000000000000000000000000000000000000	
	Assignment 7: Using the Photoshop program Practicing on manipulation and enhancing of images
Lectures 27-28	Introduction to Data frequency analysis using Fourier analysis
	and Fourier transformation searching for periodicities
	0 - 1 - 1 - 1 - 1

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written	KII I	1 Hour Evamination	Torm Final	600/	
Examination	KU, I	1 Hour Examination	Term Final	00%	
Practical	KII I	1 Hour Evamination t	Torm Final	200/	
Examination	KU, I	1 Hour Examination t	Term Final	30%	
Semester work	рт	Continuous		10%	
	P, T	Assessment		10/0	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Cor	urse Coordinator	Head of Department					
Name	Prof. Mohamed M. El-Awady	Prof. El-Said Taha Rizk					
Name (Arabic)	أ.د.محمد العوضي	أ.د. السيد طه رزق					
Signature							
Date	/9/2014	/9/2014					

Contents - Course ILOs Matrix

Contents	Kno	wled	lge	and	Und	lersta	nding	Practical	Transferable		
	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1	
Methods for graphical representations	\boxtimes	\boxtimes							\boxtimes		
Statistical Data analysis		\boxtimes							\boxtimes		
Creating powerful	\boxtimes	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes		
Use of internet capabilities and searching engines	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes		
Creating Data		\boxtimes	\boxtimes					\boxtimes	\boxtimes	\boxtimes	
Computer programming language		\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes	
Photo manipulation	\boxtimes	\boxtimes		\boxtimes			\boxtimes		\boxtimes	\boxtimes	
Introduction to Data frequency analysis	\boxtimes	\boxtimes		\boxtimes		\boxtimes			\boxtimes	\boxtimes	

Learning and Teaching Methods-ILOs

Contents	Knowle Unders				_			Intellectual skills	Practical	Transferable
	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical										
classes								X	Χ	X
Assignmen						Х				Х
ts						^				Λ

Assessment Methods-ILOs

Contents					_	and ding		Intellectual skills	Practical	Transferable
	A1	A2	А3	Α4	A5	Α6	A7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical Examinati on								х	Х	х
Semester work						Х		х		Х

Course Title	Essay and Research						
Course Code	24096						
Academic Year	2013/2014						
Coordinator	Prof. Abdel Fattah A. Zalat						
Other Staff	All Geology Staff						
Level	Graduate-M. Sc.						
Semester	Two Semesters						
Pre-Requisite							
Course Delivery	Tutorial	Tutorial setting with the supervisor: 14 x 2h					
		At least once every 2 weeks					
Parent	Geology Department						
Department							
Date of Approval	Septembe	r, 2014					

1. Aims

By the end of this course, students will be able to:

- 7) Develop geologic approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements.
- 8) apply geologic facts and theories to analyze and interpret practical geologic data
- 9) Collect, analyze, and present data using appropriate format and techniques.
- 10) Postulate concepts and choose appropriate solutions to solve problems on scientific basis.
- 11) Use effectively information technology and the software packages relevant to the geological problems.
- 12) Adopt self and long life-learning and participate effectively in research activities.

2. Intended Learning Outcomes

A. Knowledge and understanding:

Upon successful completion of this course the students should acquire knowledge and an understanding of:

A1) theortical bases, procedures and techniques used for geological field studies and related laboratory analysis.

B. Intellectual skills:

They will also acquire the ability to:

- B4. Develop the capability of interpretation and analysis of geologic data.
- B5. Assume a range of ideas to solve different geological problems.
- B6. recognize and differentiate between the published geological data

C. Professional and practical skills:

C1. Apply scientific ethics for accuracy during reporting.

- C2. Employ the geologic bases to meet community needs.
- C3. Investigate previous work and references.

D. General and transferable skills:

- D7. Use information and communication technology effectively.
- D8. Identify roles and responsibilities, and their performing manner.
- D9. consider community linked problems
- D10. Acquire self-and long life-learning.
- D11. Apply scientific models and systems effectively.
- D12. Deal with scientific patents considering property right.

3. Contents

This module is given over two semesters with no fixed programme. It will give students the opportunity to develop their written communication skills by being given practice at obtaining information from a variety of sources, organizing and presenting it as a cogent argument.

4. Teaching and Learning Methods

- Small group tutorials (1 member of staff to 1-5 students, usually following the same or related programs). 4 sessions per semester. Students tutored by different staff members in the two semesters to ensure diversity of styles and experiences. Required to write an assessed essay over the 2 semesters and to undertake preparatory work as required by the tutor.
- Students are encouraged to devote private study time to reading from a collection of general texts held in the library and to be aware of current developments via the popular scientific press.
- Supervision: The level of contact between students and supervisors during project work will vary across the different disciplines in the Faculty but all students are required to maintain regular contact with the supervisor. This is the student responsibility. Student should note that they are required to meet with the supervisor at least once every two weeks during the semesters to discuss progress. Student may, of course, make an appointment to see his supervisor at any time. Students who fail to make regular contact with the Supervisor will be reported to the Coordinator of Teaching. Students should remember, the supervisor is also his personal tutor with whom he should raise any issues of concern which may be affecting his work.

5. Student Assessment

There are three parts to the assessment of the project:

- 1. Essay Structure: 5000 words (50% awarded by supervisor and second assessor): Project report in the style of a scientific paper and supervisors mark, reflecting student effort, commitment and input to project plus team-working skills where appropriate.
- 2. Student conduct (20% awarded by supervisor): Student portfolio on the review of the literature pertinent to project area.
- 3. Seminar (30% awarded by supervisor and second assessor): oral presentation to peers and academic staff.

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Oral Assessment	KU, I	Assessment Session	Term Final	30%	
Student portfolio	KU. I	Continuous		50%	
Student portiono	KU, I	Assessment		30%	
Seminar P, T		Assessment Session	Term Final	20%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

- Initially, students are provided with a limited number of references relating to their subject area, but then are expected to search the literature on their own.

Recommended Books:

- Day R. A. 1986: How to write and publish a scientific paper. Cambridge University Press, Fourth Edition.
- Master, PA. 1986: Science, Medicine and Technology: English grammer and technical writing. Prentice-OHall, Inc., Engllewood Cliffs, New Jersey 07632.

Web sites:

- www.thomsonrights.com

7. Facilities required for teaching and learning

- Library
- Web Searching

	Course Coordinator	Head of Department
Name	Prof. Abdel Fattah A. Zalat	Prof. Abdel Fattah A. Zalat
Name (Arabic)	أ. د. عبد الفتاح علي زلط	أ. د. عبد الفتاح علي زلط
Signature		
Date	/9/2014	/9/2014

M. Sc. Programme of Applied Geophysics

Programme Specification

-					
Master of Applied Geophysics					
Master of Applied Geophysics					
Geology Department					
Faculty of Science - TU					
Tanta University					
Prof. Nader H. El-Gendy					
Prof. Dr. Salah N. Ayad, professor of geology, Faculty of					
Science, Mansura University					
Academic Reference Standards (ARS)					
Every year in September					
Internal Periodic Review, Summer 2014					
September, 2014					

1. Aims

This program enables postgraduate students to:

- 1) Gain a thorough background of the different geophysical techniques.
- 2) Learn how to acquire, process and interpret different types of measurements
- 3) Acquire the necessary practical skills needed for lifelong professional development and appreciation of the values of science to society.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of this program postgraduate students should acquire knowledge and understanding of:

- A1. the basics of the different geophysical methods and the techniques used in different settings of geophysical surveying.
- A2. the use of different geophysical instruments in the field in the search for oil, minerals, and underground water.
- A3. the potential factors affecting different geophysical measurements, and their implications in terms of mathematical computations of different geometrical structures and their expressions.

B. Intellectual skills:

They will also acquire the ability to:

B13. Write a hypothesis, plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.

- B14. Analyze subject knowledge and understanding to address familiar and unfamiliar problems related to geophysics.
- B15. Propose synthesise and assimilate diverse information in a critical manner.
- B16. Select reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.
- B17. Compose theory and practice.

C. Professional and practical skills:

- C13. Store, collate, analyse and report data of laboratory and field geophysical investigations.
- C14. Use laboratory and field investigations in a liable, safe and ethical manner.
- C15. Explain and conduct various forms of laboratory and field investigations in specific, precise and accurate manner.

D. General and transferable skills:

- D18. Write about a subject clearly, confidently and effectively using a range of presentational techniques.
- D19. Use numerical and IT skills with confidence and accuracy.
- D20. Work both independently and in collaboration with others.
- D21. Take responsibility for self-managed learning and personal/ professional development.

3. Academic standards

3.A External references for standards (Benchmarks):

Academic Reference Standards (ARS)

3.B Comparison of provision to external references:

Academic Reference Standards (ARS).

3. Academic Reference Srandards:

The Academic Reference Standards for the program of the M.SC. degree in Applied Geophysics as well as the attributes and capabilities of the graduates were based essentially on the **General Academic Reference Standards (ARS) of graduate studies** published by the National Authority for Quality Assurance and Accreditation of Education (NAQAAE 2009). The following Specific Academic Standards for the Master Degree in Applied Geophysics are adopted and were approved by the Faculty Council in 20/11/2012

Specific Academic Reference Standards

3.1 Graduate Attributes

The postgraduates of M.Sc. in Applied Geophysics must have been

Prepared for:

- 1.1 Systematic understanding and critical awareness of topics in the area of applied geophysics
- 1.2 Problems of routine nature, which are generally adequately solved.
- 1.3 Generic skills, which are appropriately developed by professional practices.
- 1.4 Advanced studies in the area of applied geophysics to support research work.
- 1.5 Information gathering, evaluation of published information, critical analysis of data.
- 1.6 Field and experimental work is carried out independently in a reliable and efficient manner.

3.2. Knowledge and Understanding

By the end of the M.Sc. program, the postgraduate students must be able

to acquire knowledge and understanding of:

- 2.3 In-depth knowledge of the core themes of applied geophysics.
- 2.2 Different important procedures and techniques used in the field of geophysical analyses.
- 2.3 The ethics and bases of scientific research in general and that of the geophysical research in particular.
- 2.4 Theories of geophysical sciences and broaden his/her scope of theories of other interdisciplinary fields.

3.3. Intellectual Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 3.1- Use the knowledge of the applied geophysics.
- 3.2- Differentiate geophysical problem-solving procedures and techniques.
- 3.3- Identify and analyze problems critically, set priorities and make professional decisions.
- 3.4- Develop a scientific technical planning based on sufficient applied geophysical field observations.
- 3.5- Test and analyze hypotheses in the field of applied geophysics and deal with relevant to problems.

3.4. Practical and Professional Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 4.1- Digest, critically evaluate and present applied geophysical research.
- 4.2- Appreciate kinds of data limitation and accuracy.
- 4.3- Write professional reports efficiently.
- 4.4- Create plans to maximize the quality of the applied geophysical analytical performance.
- 4.5- Evaluate resources of data in the applied geophysical research and renovate them.

3.5. General and Transferable Skills

By the end of the M.Sc. program, the postgraduate students must be able to:

- 5.1- Attain an independent learning technique for a lifetime, professional career development in the field of applied geophysics.
- 5.2- Work out geophysically-based initiative plans and deal with stress and time management.
- 5.3- Communicate verbally and exchange the results and information successfully.
- 5.4- Use information and communication technology.

4. Curriculum Structure and contents: 4.A Programme duration One Year 4.B Programme structure 4.B.1 Number of contact hours per Week: First term: Lectures 15 Lab. Total Second term: Lectures 15 Lab. Total **Overall Contact hours** Lectures Lab. Total 30 4.B.2 Number of contact hours None Optional None Compulsory 30 Optional 4.B.3 Number of credit hours of specialized courses No. 36 % 100 4.B.4 Number of contact hours of courses of social sciences and humanities: No. % 4.B.5 Number of credit hours of other courses: No.

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Exer.	Program ILOs Covered
Code	Three of the first four courses are obligatory		Hours		
1431	Gravity methods	2	-	-	
1432	Seismic methods	2	-	1	
1433	Electrical methods	2	-	1	
1434	Magnetic methods	2	-	-	
1435	Essay	2	-	-	
1436	Statistics	1	-	1	
1437	Computer	1	1	-	

6. Programme admission requirements

The applicants must have obtained a Bachelor's degree, or its equivalent, in Geology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders (Employers)	Not applied yet	
4. External Evaluator(s) (External Examiner(s))	Prof. Salah N. Ayad	

Thesis

The thesis of M.Sc. in Applied Geophysics is a formal written document representing sustained research contributes to the accumulated understanding of the Applied Geophysics field. Throughout the preparation of the thesis student demonstrate in-depth, specialist knowledge and sophisticated understanding of concepts, information and techniques at the forefront of the discipline; exhibit mastery in the exercise of intellectual abilities including theoretical and practical skills; take a proactive and self-reflective role in working and to develop professional relationships with others; proactively formulate ideas and hypotheses;

evaluate current issues; develop, implement and execute plans meeting deadlines and to employ IT and library resources appropriately

Responsibility for different phases in the preparation and checking of a graduate thesis rests jointly with the student, the members of supervision committee and the graduate office. The supervision committee may control of the following:

- 4. Thesis divisions and their order
- 5. Terminology for the division
- 6. The arrangement of reference material.

A graduate thesis is a permanent evidence of contribution made by students in particular field of knowledge and should reflect credit on the University as well as on the students. Student has a duty to present findings not only with precision, but also intelligently and attractively. A thesis must include all the significant results obtained and must disclose all the methods and processes employed in research in such a detail that the work may be repeated by anyone skilled in the field. The student should be scrupulously careful to give references to all the work on which the thesis depends directly or significantly. Good usage requires documentation of statements whenever possible by reference to published and unpublished.

The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors)
- Table of contents
- Introduction, containing a definition of the thesis statement and the aim.
- Literature review.
- Materials and methods.
- Results.
- Discussion and conclusions.
- References.

Language of the thesis:

• The thesis is written in English accompanied by a summary in Arabic.

One accepted paper is required

• Before the thesis can be presented for granting the M.Sc. degree, at least one accepted paper is required

Apply the thesis to the Department Council

 With the approval of the thesis by the supervision committee, the student can apply the thesis to the Department Council.

Examiners Committee

• The examiners committee is selected by Geology Department Council. The M.Sc. Degree is awarded to the applicant by Tanta University Council, upon the recommendation of the department and the Faculty Council.

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place.

Courses - Programme ILOs Matrix

			Pr	ogra	mm	e c	outco	ome	s ILC	s					
Courses	Knowledge and Understanding				Intellectual				Practical			Transferabl e			
	A1	A2	А3	B1	B2	В3	B4	B5	C1	C2	СЗ	D1	D2	D3	D4
1431 Gravity methods	\boxtimes				\boxtimes		\boxtimes					\boxtimes	\boxtimes		
1432 Seismic methods		\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes						\boxtimes		
1433 Electrical methods						\boxtimes	\boxtimes						\boxtimes		\boxtimes
1434 Magnetic methods		\boxtimes	\boxtimes			\boxtimes	\boxtimes						\boxtimes	\boxtimes	\boxtimes
1427 Essay			\boxtimes					\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes
1428 Statistics			\boxtimes					\boxtimes				\boxtimes	\boxtimes		\boxtimes
1429 Computer													\boxtimes		

Name	Signature	Date
Programme Coordinator: Prof. Nader H. El-Gendy أ. د.نادر حسنى الجندى		/9/2014
Head of Quality Assurance Unit: Prof. Hoda K.El-Sayied أ. د.هدى كمال السيد		/9/2014
Dean of the Faculty: Prof. Tarek A. Fayed أ. د. طارق عبد المنعم فايد		/9/2014

Course Title	Gravity Methods						
Course Code	1431	1431					
Academic Year	2014/2015	2014/2015					
Coordinator	Prof. Mohamed	Prof. Mohamed El Awady					
Other Staff	Prof. Mohamed R. Soliman						
Level	Graduate-M.Sc.						
Semester	Taught over 2 semesters						
Pre-Requisite	B.Sc. in Geology	or Geophysics					
Course Delivery	Lecture	28 x 2h lectures					
Parent	Geology						
Department							
Date of Approval	September, 2014						

1. Aims

This course will enable students to:

- 1. Gain knowledge of the main concepts of gravity of the earth.
- 2. carry out different types of measurements and apply relevant corrections
- 3. interpret data and handle different problems encountered

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Main basic of gravitational potential field.
- A2. Different subsurface structures throw solving problems..
- A3. Proper interpretation

B. Intellectual skills:

They should also acquire the ability to:

- B1. measure 2-D and 3-D subsurface structures using different models
- B2. draw the subsurface tectonic and basement surface maps.
- B3. interpret the deduced tectonic structure and determine parameters..

D. General and transferable skills:

- D1. Appropriate scientific communication.
- D2. work independently and within a team.
- D3. make good use of IT knowledge.

3. Contents

Lectures 1-4	Basics of gravity methods
Lectures 5-7	Types of gravity corrections
Lectures 8-10	Types of gravity surveying
Lectures 11-15	Data separation
Lectures 16-20	Gravity effects from forms
Lectures 21-25	Interpretation methods, density determination by gravity isostasy
Lectures 21-28	Application of gravity methods

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures
- Web search assignments
- Writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

^{*}KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Gravity and magnetic oil prospecting, Nettleton, 1976.
- Introduction to geophysical prospecting (Dobrin, and Savit, 1988)

Recommended Books:

- Applied Geophysics (Telford et al., 1990)
- Gravity and magnetic oil prospecting, Nettleton, 1976.

Periodicals, Web sites:

- J. Geophysical Research
- J. Earth planet. Interiors

- Geophysical J. International.

7. Facilities required for teaching and learning

- Computer
- Data show projector
- Sophisticated licensed software

Со	urse Coordinator	Head of Department
Name	Prof. Mohamed M. El Awady	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ.د. محمد محمد العوضى	أ.د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

		Programme outcomes ILOs									
Courses	Knowle	Int	ellec	tual	Tra	Transferable					
	A1	A2	A3	B1	B2	В3	D1	D2	D3		
Basics of gravity methods	\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes			
Types of gravity corrections		\boxtimes			\boxtimes	\boxtimes		\boxtimes			
Types of gravity surveying					\boxtimes	\boxtimes		\boxtimes	\boxtimes		
Data separation		\boxtimes			\boxtimes	\boxtimes		\boxtimes	\boxtimes		
Gravity effects from forms	\boxtimes			\boxtimes					\boxtimes		
Interpretation methods, density determination by gravity isostasy				\boxtimes			\boxtimes	\boxtimes	\boxtimes		
Application of gravity methods				\boxtimes				\boxtimes	\boxtimes		

Learning and Teaching Methods-ILOs

Learning and Teaching Methods	Course outcomes ILOs											
	Knowledge and Understanding				Intellectual				Transferable			
	A1	A2	А3		В1	В2	В3		D1	D2	D3	
Lectures	Х	Х	Х		Х				Х			
Web search assignments			х				х		Х	Х		
Writing Reports		Х				Х					Х	

Assessment Methods-ILOs

Assessment Methods	Course outcomes ILOs												
	Knowledge and Understanding I					Intellectual				Transferable			ble
	A1	A2	А3			B1	B2	В3		D1	D2	D3	
Written Examination	Х	X	X			Χ	Χ						

Course Title	Seismic Metho	Seismic Methods						
Course Code	1432	432						
Academic Year	2014/2015	014/2015						
Coordinator	Dr Moataz Kh. B	r Moataz Kh. Barakat						
Other Staff								
Level	Graduate-M. Sc.	Graduate-M. Sc.						
Semester	Taught over 2 s	emesters						
Pre-Requisite	B.Sc. in Geology	or Geophysics						
Course Delivery	Lecture	28 x 2h lectures						
Parent	Geology							
Department								
Date of Approval	September, 20	14						

1. Aims

This course will enable students to:

- 1) identify major geologic features on seismic data.
- 2) generate simple seismic time/structure maps.
- 3) interpret simple attribute extractor maps.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. seismic signals and seismic nose.
- A2. 2 and 3D seismic data.
- A3. methods of acquisition and processing.

B. Intellectual skills:

They should also acquire the ability to:

- B1. measure 2-D and 3-D subsurface structures using seismic methods
- B2. adept in exploiting modern data interpretation workstation software.
- B3. interpret the seismic amplitudes.

D. General and transferable skills:

- D1. Appropriate scientific communication.
- D2. work independently and within a team.
- D3. make good use of IT knowledge.

3. Contents

Lectures 1-3	Seismic signal and seismic noise									
Lectures 4-6	2 and 3D seismic data acquisition and processing									
Lectures 7-9	Problems associated with statistic correlations for land data									
Lectures 10-12	verview of seismic velocities time and depth migration									
Lectures 13-15	2 and 3D interpretation; similarities and difference interpretation									
Lectures 16-18	Structural and geologic interpretation									
Lectures 19-20	Interpreting seismic amplitudes									
Lectures 21-23	Complex attributes, thin bed tuning and spectral decomposition									
Lectures 24-25	AVO and seismic data visualizations									
Lectures 26-28	Problems associated with gridded maps									
Weeks 29, 30	Assessment									

4. Teaching and Learning Methods

- Lectures
- Web search assignments
- writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

^{*}KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Introduction to geophysical prospecting (Dobrin, and Savit, 1988)
- Applied Geophysics (Telford, et al., 1990)

Recommended Books:

- Veeken, P. c. H. (2007): Seismic Stratigraphy, basin analysis and reservoie characterization. Vol. 37: 509 pp. Elsevier, oxford. UK.
 - Applied Geophysics (Telford et al., 1990)

Periodicals, Web sites:

- J. Geophysical Research
- J. Earth planet. Interiors

Geophysical J. International.

7. Facilities required for teaching and learning

- Computer
- Data show projector, Sophisticated licensed software

Со	urse Coordinator	Head of Department
Name	Dr Moataz Barakat	Prof. Abdelfattah Ali Zalat
Name (Arabic)	د. معتز خیری برکات	أ.د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

		Course outcomes ILOs										
Contents	Knowledg	ge and Unde	rstanding	Int	ellec	tua	I	Trar	nsfera	ble		
	A1	A2	А3	B1	B2	В3		D1	D2	D3		
Seismic signal and	\boxtimes	\boxtimes		П	\boxtimes			\boxtimes	\square			
seismic noise										Ш		
2 and 3D seismic data												
acquisition and		\boxtimes			\boxtimes	\boxtimes			\boxtimes			
processing												
Problems associated												
with statistic						\boxtimes			\boxtimes	\boxtimes		
correlations for land												
data												
Overview of seismic			<u> </u>	_								
velocities time and		\boxtimes		Ш		\boxtimes			\boxtimes			
depth migration												
2 and 3D												
interpretation;												
similarities and	\boxtimes			\boxtimes	Ш	Ш		Ш				
differences												
interpretation												
Structural and												
geologic				\boxtimes	Ш	Ш		\boxtimes	\boxtimes	\boxtimes		
interpretation												
Interpreting				\boxtimes	П				\boxtimes			
seismic amplitudes												
Complex												
attributes, thin bed				\boxtimes					\boxtimes	\boxtimes		
tuning and spectral												
decomposition												
AVO and seismic		\bowtie		\boxtimes	\boxtimes				\boxtimes	\boxtimes		
data visualizations		<u></u>										
Problems												
associated with				\boxtimes				Ш	\boxtimes			
gridded maps												

Learning and Teaching Methods-ILOs

Learning and Teaching Methods		Course outcomes ILOs									
	Knowledge	Knowledge and Understanding				ctua	al Tı	Transferable			
	A1	A2	А3	B1	B2	В3	D:	L D2	D3		
Lectures	Х	Х	Х	Х			>				
Web search assignments			Х			Х	>	X			
Writing Reports		Х			Х				Х		

ssessment Methods-ILOs

Assessment Methods	Course outcomes ILOs										
	Knowledge and Understanding				Intellectual				Transferable		
	A1	A2	А3	B1	B2	В3		D1	D2	D3	
Written Examination	Х	Х	Х	Х	Χ						

Course Title	Electrical Metho	ods					
Course Code	1433						
Academic Year	2014/2015						
Coordinator	Prof. Nader Hosn	i El Gendy					
Other Staff							
Semester	Taught over 2 se	aught over 2 semesters					
Pre-Requisite	B.Sc. in Geology	B.Sc. in Geology or Geophysics					
Course Delivery	Lecture	28 x 2h lectures					
Parent	Geology						
Department							
Date of	September, 201	4					
Approval							

1. Aims

This course will enable students to:

- A1. Provide with basic concepts of electrical methods.
- A2. Differentiate between methods employing natural and artificial electrical sources.
- A3. Realize the importance of electrical logging in solving geological problems.
- A4. Ground water exploration.
- A5. Engineering geology.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. Electrical methods (theoretical back ground-relation between resistivity and geology)
- A2. Resistivity survey (traditional resistivity survey-advantages and disadvantages of different arrays).
- A3. Self-potential and resistivity logging.

B. Intellectual skills:

They should also acquire the ability to:

- B1. Interpret of the geoelectrical data (type of electrical sound curve or horizontal stratified media).
- B2. Interpret the induced polarization data.
- B3. Analyze the self-potential and resistivity logs.

B4. Apply electrical method for ground water exploration and for engineering applications.

D. General and transferable skills:

- D1. Conduct appropriate scientific communication.
- D2. Work independently and within a team.
- D3. Make good use of IT knowledge.

3. Contents

- Lectures 1-4 Principal of electrical resistivity method
 - Horizontal profiling technique (HP)
 - Vertical electrical sounding technique (VES)
- Lectures 5-7 Interpretation of vertical electrical sounding data
 - Curve matching technique
 - Iso-apparent resistivity contour map
 - Geoelectric cross section
- Lectures 8-10 Interpretation of resistivity profiling data
 - Electrical imaging surveys for environmental and engineering studies
 - Engineering and ground water application of electrical resistivity measurement
- Lectures 11-15 Induced polarization method
- Lectures 16-19 Sp logging (origin and measuements)
- Lectures 20-22 Deep resistivity logging
- Lectures 23-25 Induction logging
- Lectures 26-28 Shallow resistivity logging
- Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures
- Web search assignments
- Writing reports
- Discussion

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

*KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Serra, O 1984: Fundamentals of well log interpretation. Amsterdam, Oxford, New York, 250p.
- Sharma, P.V., 1986. Geophysical methods in geology. Elsevier, Amsterdam, 442p.

Recommended books

- Keller, 1984: Electrical methods in Geophysical prospecting. I.I.C. Holland
- Dobrin, M. 1960: introduction to geophysical property. Mc. Graw-Hill Book Company, New York, 630p.
- Schlumberger, 1987: log interpretation principles/Applications.

Periodicals, Web sites

J. Geophysical Research

Earth Planet. Science Letters

Geophysical J. International.

7. Facilities required for teaching and learning

- Computer
- Data show projector
- Sophisticated licensed software

Co	urse Coordinator	Head of Department
Name	Prof. Nader Hosni El Gendy	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ.د. نادر حسنى الجندى	أ.د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents - Course ILOs Matrix

Course outcomes ILOs		Knowledge and Understanding			lı	ntell	ectu	al	Transferable			
Course Contents	A1	A2	А3		B1	B2	В3	B4	D1	D2	D3	
Principal of electrical resistivity method	\boxtimes	\boxtimes				\boxtimes			\boxtimes	\boxtimes		
Interpretation of vertical electrical sounding data		\boxtimes	\boxtimes			\boxtimes	\boxtimes			\boxtimes		
Interpretation of resistivity profiling data						\boxtimes	\boxtimes			\boxtimes	\boxtimes	
Induced polarization method		\boxtimes	\boxtimes			\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	
Sp logging (origin and measurements)	\boxtimes				\boxtimes						\boxtimes	
Deep resistivity logging					\boxtimes				\boxtimes	\boxtimes	\boxtimes	
Induction logging			\boxtimes		\boxtimes			\boxtimes		\boxtimes	\boxtimes	
Shallow resistivity logging		\boxtimes	\boxtimes			\boxtimes		\boxtimes		\boxtimes	\boxtimes	

Learning and Teaching Methods-ILOs

		Course outcomes ILOs										
Learning and Teaching Methods	Knowledge and Understanding				Intellectual				Transferable			
	A1	A2	A3	В1	В2	ВЗ	B4	D1	D2	D3		
Lectures	Х	Х	Х	Х				Х				
Web search assignments						х		Х	Х			
Writing Reports					Х		Х			Х		
Discussion				Х	Х			Х	Х			

Assessment Methods-ILOs

Course outcomes ILOs	Knowledge and Understanding I			Intellectual				Transferable			
Assessment Methods	A1	A2	А3	B1	B2	В3	B4	D1	D2	D3	
Written Examination	Х	Х	Х	Х	Х						

Course Title	Magnetic Meth	nods					
Course Code	1434						
Academic Year	2013/2014	13/2014					
Coordinator	Prof. Mohamed	of. Mohamed R. Soliman					
Other Staff	Dr. Shadia T. El-	r. Shadia T. El-Khodary					
Semester	Taught over 2 s	Taught over 2 semesters					
Pre-Requisite	B.Sc. in Geolog	y or Geophysics					
Course Delivery	Lecture	28 x 2h lectures					
Parent	Geology						
Department							
Date of Approval	September, 20	14					

1. Aims

This course will enable students to:

- 1) gain knowledge of the basics and concepts of different types of magnetism.
- 2) analyze different types of magnetic data.
- 3) interpret magnetic data in different geologic settings

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A1. magnetic methods
- A2. separation of different types of magnetic data sets.
- A3. handling and interpretation of different magnetic data types

B. Intellectual skills:

They should also acquire the ability to:

- B1. visualize how earth's magnetic field initializes
- B2. compute current and past geomagnetic variations
- B3. depict surface and subsurface structures

D. General and transferable skills:

- D1. conduct appropriate scientific communication.
- D2. work independently and within a team.
- D3. make good use of IT knowledge.

3. Contents

Lectures 1-4 Basics of magnetic methods

Lectures 5-7 Types of magnetism

Lectures 8-10 Data acquision (field & lab)

Lectures 11-15 Data analysis

Lectures 16-20 Data interpretation

Lectures 21-28 Application of magnetic methods

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures
- Web search assignments
- writing reports

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 30 th Week	100%

*KU: Knowledge and Understanding, I: Intellectual

6. List of references

Essential Books:

- Butler, F. B. Paleomagnetism, magnetic domains to geologic terrains. Blackwell Sci. Publ., 319p.
- Sharma, P.V., 1986. Geophysical methods in geology. Elsevier, Amsterdam, 442p.
- Nettleton, L. L., 1976. Gravity and magnetic in oil prospecting. Mc. Grow Hill Book Co. N. Y., 464p.

Recommended books

- Applied Geophysics (Telford et al.), 1992.
- Paleomagnetism, continents and oceans (McElhinny & McFadden),2000.

Periodicals, Web sites

J. Geophysical Research

Geophysical J. International.

7. Facilities required for teaching and learning

- Computer
- Data show projector
- Sophisticated licensed software

Co	ourse Coordinator	Head of Department
Name	Prof. Mohamed R. Soliman	Prof. Abdelfattah Ali Zalat
Name (Arabic)	أ.د .محمد رفعت سليمان	أ.د. عبدالفتاح على زلط
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

	Course outcomes ILOs										
Course contents	Knowledg	Knowledge and Understanding				ctual	Transferable				
	A1	A2	А3	B1	B2	В3	D1	D2	D3		
Basics of magnetic methods	\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes			
Types of magnetism		\boxtimes	\boxtimes		\boxtimes	\boxtimes		\boxtimes			
Data acquision (field & lab)					\boxtimes	\boxtimes		\boxtimes	\boxtimes		
Data analysis		\boxtimes			\boxtimes			\boxtimes	\boxtimes		
Data interpretation	\boxtimes			\boxtimes					\boxtimes		
Application of magnetic methods		\boxtimes	\boxtimes	\boxtimes	\boxtimes			\boxtimes	\boxtimes		

Learning and Teaching Methods-ILOs

Learning and Teaching Methods	Course outcomes ILOs									
	Knowledge and Understanding				llec	tual	Transferable			
	A1	A2	А3	B1	B2	В3	D1	D2	D3	
Lectures	Х	Х	Х	Χ			Х			
Web search assignments			Х			Х	Х	Х		
Writing Reports		Х			Χ				X	

Assessment Methods-ILOs

		Cor	urses outco	mes	ILOs				
Assessment Methods	Knowledge and Understanding				llec	tual	Transferable		
	A1	A2	А3	B1	B2	В3	D1	D2	D3
Written Examination	Х	X	X	X	Χ			Х	

Course Title	Statistics			
Course Code	1436			
Academic Year	2014/2015	2014/2015		
Coordinator	Prof. Kadry Zaka	ria Elsherbeny		
Other staff				
Semester	Taught over 2 sen	nesters		
Pre-Requisite	B.Sc. Geology			
Course delivery	Lecture	28 x 1h lectures		
	Practical	-		
Parent	Mathematics Depa	artment		
Department				
Date of	September, 2014			
Approval				

1. Aims

This module aims to provide M. Sc. students in geology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific geological research. Emphasis will be on practical and applied skills using example of relevance to geology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- A5. statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A6. study design.
- A7. types of variables that are used in geological research.
- A8. sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B1. carry out confidently simple essential statistical methods in geological research and to interpret results.
- B2. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B3. summarize data using graphical and tabular data.
- B4. interpret research findings and explain them in a clear, concise and logical manner.

D. Transferable skills

D4. write report including graphical material.

D5. present and discuss the finding from statistical analysis in a clear, concise and logical manner.

D6. use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (one hour/week)

Introduction: Variables and distributions. Lectures 1 Lectures 2-3 Summarizing data. Lectures 4-5 Sampling variability of a mean. Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples. Lectures 8-9 ANOVA: Comparing more than two samples. Lecture 10 Examination. Sampling variability of proportions. Lectures 11-12 Lectures 13-14 Analysis of categorical data; comparing two proportions Lectures 15-16 Regression and correlation. Lectures 17-18 Comparing correlations and regression. Multiple regressions. Lectures 19-20 Regression and correlation: Computer applications. Lectures 21-22 Comparing distribution: Computer applications. Lectures 23-24 Comparing means: Computer applications. Lectures 25-26 Comparing variances: Computer applications. Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.

Weeks 29, 30 Assessment

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 29 th Week	100%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill. *Recommended books*
 - Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
 - Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: video and overhead.
- Computers presentations and writing boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Kadry Zakaria Elsherbeny	Prof. Kadry Zakaria Elsherbeny
Name (Arabic)	أ. د. قدرى زكريا الشربينى	أ. د. قدرى زكريا الشربينى
Signature		
Date	/9/2014	/9/2014

Course Contents – Course ILOs Matrix

				Course outo	ome	es IL	Os				
Course Contents	Knowle	dge an	d Und	erstanding	Int	tell	ectı	ıal	Trai	nsfer	able
	A1	A2	А3	A4	B1	B2	В3	B4	D1	D2	D3
Introduction		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	
Summarizing data	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes		
Sampling variability of a mean		\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes		\boxtimes		
Analysis of quantitative data	\boxtimes				\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
ANOVA					\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	
Sampling variability of proportions	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Analysis of categorical data	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	
Regression and correlation	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing correlations and regression	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes
Regression and correlation	\boxtimes		\boxtimes				\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing distribution	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes
Comparing means		\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	
Comparing variances										\boxtimes	
Design of experiments	\boxtimes			\boxtimes						\boxtimes	

Learning and Teaching Methods-ILOs

Lagraina and		Course outcomes ILOs									
Learning and Teaching Methods	Knowle	nowledge and Understanding Intellectual Transferab								ble	
reaching Methous	A1	A2	А3	A4	В1	B2	В3	В4	D1	D2	D3
Lectures	Х	Х	Х		Х	Χ	Х		Х	Х	
private study				Х				Х			Х

Assessment Methods-ILOs

	Course outcomes ILOs Knowledge and Understanding Intellectual Tr										
Assessment Methods						Knowledge and Understanding Intellectual Tran				sfera	able
	A1	A2	А3	A4	B1	В2	ВЗ	В4	D1	D2	D3
Written Examination	Х	Х	Х	Х	Х	Х					

Course Title	Computer					
Course Code	1437					
Academic Year	2014/2015	2014/2015				
Coordinator	Prof. Mohamed I	Prof. Mohamed El-Awady				
Other Staff	Prof. Mahmoud I	Prof. Mahmoud Kamel, , Prof. Qadry Zakaria				
Semester	Taught over 2 semesters					
Pre-Requisite	B.Sc.					
Course Delivery	Lecture	28 x 1h lectures				
	Practical	28 x 1h practicals				
Parent	Computer Centr	е				
Department						
Date of	September, 201	4				
Approval						

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- 1) Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- 2) Underpin academic work throughout postgraduate studies.
- 3) Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

At the end of this module students should acquire knowledge and understanding of the underlying concepts and principles of:

- 1. use of IT in the context of their postgraduate studies.
- 2. diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- 3. necessary graphical, statistical and frequency analyses of different types of data.
- 4. powerful presentation using sophisticated software packages and make use of different internet resources.
- 5. description of scientific problems using computer programming and make use of different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B4.Demonstrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

D4. Perform the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

•		4		4
3.	nη	Te	'n	TC

3. Contents	
Lectures 1-2	Methods for graphical representations, Data analysis and Data modeling
Lectures 3-4	Assignment 1: Using Application programs
	Calculation of Slope and intersection of lines ,
	Best fitting for data,
	Extracting Trend , and Equations for acquired data (linear –
	exponential- logarithmicetc)
Lectures 5-6	Statistical Data analysis
Lectures 5 0	Statistical Pata dilalysis
Lectures 7-9	Assignment 2: Using Application programs
	Apply some statistical function such as Average, Median, STDEV,
	and Correlation on a simulated data
Lectures10-11	Creating powerful presentation including charts, images, video,
	etc and different attractive animations
Lectures12-14	Assignment 3: Using PowerPoint program
	Design a real and powerful presentation with different acquired
	skills
Lectures15-17	Use of internet capabilities and searching engines
Lectures15-17	Use of internet capabilities and searching engines Assignment 4: Using the Internet
Lectures15-17	·
Lectures15-17 Lectures18-20	Assignment 4: Using the Internet
	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports
	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs
	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports
	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports
Lectures18-20	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information
Lectures18-20	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language
Lectures18-20	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language Assignment 6: Programming using Visual Basic 6
Lectures18-20 Lectures21-23	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language
Lectures18-20 Lectures21-23	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language Photo manipulation and enhancement using the photoshop
Lectures18-20 Lectures21-23	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language Photo manipulation and enhancement using the photoshop Assignment 7: Using the Photoshop program
Lectures21-23 Lectures24-26	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language Photo manipulation and enhancement using the photoshop Assignment 7: Using the Photoshop program Practicing on manipulation and enhancing of images
Lectures21-23 Lectures24-26	Assignment 4: Using the Internet Life search on the internet for some real information Creating Data Base and related Queries and Reports Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information Computer programming language Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language Photo manipulation and enhancement using the photoshop Assignment 7: Using the Photoshop program Practicing on manipulation and enhancing of images Introduction to Data frequency analysis using Fourier analysis

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Co	urse Coordinator	Head of Department					
Name Prof. Mohamed M. El-Awady		Prof. El-Said Taha Rizk					
Name (Arabic)	أ.د. محمد محمد العوضي	أ.د. السيد طه رزق					
Signature							
Date /9/2014		/9/2014					

Course Contents – Course ILOs Matrix

Contents	Kno	owle	dge	and	Und	erstar	Practical	Transf	erable	
	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1
Methods for graphical representations	\boxtimes	\boxtimes						\boxtimes	\boxtimes	
Statistical Data analysis	\boxtimes							\boxtimes	\boxtimes	
Creating powerful presentation	\boxtimes	\boxtimes	\boxtimes	\boxtimes				\boxtimes	\boxtimes	
Use of internet capabilities and searching engines	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes	\boxtimes	
Creating Data Base	\boxtimes	\boxtimes	\boxtimes					\boxtimes	\boxtimes	\boxtimes
Computer programming language	\boxtimes	\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes
Photo manipulation	\boxtimes	\boxtimes		\boxtimes			\boxtimes		\boxtimes	\boxtimes
Introduction to Data frequency analysis	\boxtimes	\boxtimes		\boxtimes		\boxtimes			\boxtimes	\boxtimes

earning and Teaching Methods-ILOs

Contents					_	and		Intellectual skills	Practical	Transferable
	A1	A2	А3	Α4	Α5	Α6	A7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical										
classes								X	Х	X
Assignments						Х				Х

Assessment Methods-ILOs

Contents					_	and ding		Intellectual skills	Practical	Transferable
	A1	A2	А3	A4	A5	A6	A7	B1	C1	D1
Lectures	Х	Х	Х	Х	Х		Х			
Practical Examinati on								х	Х	х
Semester work						Х		Х		Х

Course Title	Essay and	Research				
Course Code	24096					
Academic Year	2014/201	2014/2015				
Coordinator	Prof. Abd	Prof. Abdel Fattah A. Zalat				
Other Staff	All Geolog	All Geology Staff				
Level	Graduate-	Graduate-M. Sc.				
Semester	Two Semesters					
Pre-Requisite						
Course Delivery	Tutorial	Tutorial setting with the supervisor: 14 x 2h				
		At least once every 2 weeks				
Parent	Geology D	Department				
Department						
Date of Approval	Septembe	r, 2014				

1. Aims

By the end of this course, students will be able to:

- 13) develop geologic approaches that meet community needs considering economic, environmental, social, ethical, and safety requirements.
- 14) apply geologic facts and theories to analyze and interpret practical geologic data
- 15) collect, analyze, and present data using appropriate format and techniques.
- 16) postulate concepts and choose appropriate solutions to solve problems on scientific basis.
- 17) use effectively information technology and the software packages relevant to the geological problems.
- 18) adopt self and long life-learning and participate effectively in research activities.

2. Intended Learning Outcomes

A. Knowledge and understanding:

Upon successful completion of this course the students should acquire knowledge and an understanding of:

A1) theortical bases, procedures and techniques used for geological field studies and related laboratory analysis.

B. Intellectual skills:

They will also acquire the ability to:

- B7. develop the capability of interpretation and analysis of geologic data.
- B8. Assume a range of ideas to solve different geological problems.
- B9. recognize and differentiate between the published geological data

C. Professional and practical skills:

- C1. apply scientific ethics for accuracy during reporting.
- C2. employ the geologic bases to meet community needs.
- C3. investigate previous work and references.

D. General and transferable skills:

- D13. use information and communication technology effectively.
- D14. identify roles and responsibilities, and their performing manner.
- D15. consider community linked problems
- D16. acquire self-and long life-learning.
- D17. apply scientific modles and systems effectively.
- D18. deal with scientific patents considering property right.

3. Contents

This module is given over two semesters with no fixed programme. It will give students the opportunity to develop their written communication skills by being given practice at obtaining information from a variety of sources, organizing and presenting it as a cogent argument.

4. Teaching and Learning Methods

- Small group tutorials (1 member of staff to 1-5 students, usually following the same or related programs). 4 sessions per semester. Students tutored by different staff members in the two semesters to ensure diversity of styles and experiences. Required to write an assessed essay over the 2 semesters and to undertake preparatory work as required by the tutor.
- Students are encouraged to devote private study time to reading from a collection of general texts held in the library and to be aware of current developments via the popular scientific press.
- Supervision: The level of contact between students and supervisors during project work will vary across the different disciplines in the Faculty but all students are required to maintain regular contact with the supervisor. This is the student responsibility. Student should note that they are required to meet with the supervisor at least once every two weeks during the semesters to discuss progress. Student may, of course, make an appointment to see his supervisor at any time. Students who fail to make regular contact with the Supervisor will be reported to the Coordinator of Teaching. Students should remember, the supervisor is also his personal tutor with whom he should raise any issues of concern which may be affecting his work.

5. Student Assessment

There are three parts to the assessment of the project:

1. Essay Structure: 5000 words (50% awarded by supervisor and second assessor): Project report in the style of a scientific paper and supervisors mark, reflecting student effort, commitment and input to project plus team-working skills where appropriate.

- 2. Student conduct (20% awarded by supervisor): Student portfolio on the review of the literature pertinent to project area.
- 3. <u>Seminar (30% awarded by supervisor and second assessor): oral</u> presentation to peers and academic staff.

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Oral Assessment	KU, I	Assessment Session	Term Final	30%
Student portfolio	KU. I	Continuous	50%	
		Assessment		30%
Seminar	Р, Т	Assessment Session	Term Final	20%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

 Initially, students are provided with a limited number of references relating to their subject area, but then are expected to search the literature on their own.

Recommended Books:

- Day R. A. 1986: How to write and publish a scientific paper. Cambridge University Press, Fourth Edition.
- Master, PA. 1986: Science, Medicine and Technology: English grammer and technical writing. Prentice-OHall, Inc., Engllewood Cliffs, New Jersey 07632.

Web sites:

- www.thomsonrights.com

7. Facilities required for teaching and learning

- Library
- Web Searching

	Course Coordinator	Head of Department
Name	Prof. Abdel Fattah A. Zalat	Prof. Abdel Fattah A. Zalat
Name (Arabic)	أ. د. عبد الفتاح علي زلط	أ. د. عبد الفتاح علي زلط
Signature		
Date	/9/2014	/9/2014

Posquadrae Program and Gourse Specifications

Zoology

Contents

Course name	Page			
M.Sc. Programme of Ecology				
Academic Reference Standards for M.Sc. of Ecology	1			
A. Programme Specification of Master of Ecology	5			
B. Course Specification				
Freshwater Ecology	10			
Marine Ecology	18			
Desert Ecology	27			
Soil biology	35			
Biostatistics	42			
Computer	46			
M.Sc. ProgrammeofExperimental Zoology				
Academic Reference Standards for M.Sc. of Experimental Zoology	52			
A.Program Specification of Master of Experimental Zoology	56			
B. Course specification				
Histochemistry	63			
Radiobiology	77			
Genetics	85			
Experimental Embryology	92			
Immunology	96			
Biostatistics	101			
Computer	106			
M.Sc. Programme of Comparative Anatomy of Invertebrates	111			
Academic Reference Standards for M.Sc. degree in Comparative Anatomy of Invertebrates				
A.Program Specification of Master of Comparative Anatomy of Invertebrates	115			
B. Course Specification				
Histology	125			
Comparative Anatomy of Invertebrates	130			
Invertebrate Embryology	143			
Invertebrate Phylogeny	154			
Biostatistics	169			
Computer	175			
M.Sc. Programme of Comparative Anatomy of Vertebrates				
Academic Reference Standards for M.Sc. degree in Comparative Anatomy of Vertebrates	180			
A.Program Specification of Master of Comparative Anatomy of Vertebrates	184			
B. Course Specification	404			
Histology	191			
Comparative Anatomy of vertebrates	197			
Vertebrate Embryology	202			
Vertebrate Evolution	206			
Biostatistics	209			
Computer	213			
M. Sc. Programmeof Insect Ecology	217			
Academic Reference Standards for M.Sc. degree in Insect Ecology	217			
A.Program Specification of Master of Master of Insect Ecology	221			
B. Course Specification Insecticides and pollution	228			
Biological control Medical enterpolacy	235			
Medical entomology	240 244			
Biostatistics	244			

M.Sc. Program of Ecology

Academic Reference Standards for M.Sc. degree in Ecology

1. Academic Standards:

The Academic Reference Standards (ARS) for the award of the M.Sc. degree in Ecology are designed to provide students with the knowledge and skills for proficiency in Ecological Science. The National Authority for Quality Assurance and Accreditation of Education (NAQAAE) for M.Sc. degree are used as the core of these academic standards to determine appropriate content and process skills for students. The relationship between science, our environment, and our everyday world is crucial to each student's success and should be emphasized. Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content.

The following Specific ARS for the M.Sc. in Ecology were approved by the Council of the Faculty of Science, Tanta University.

1.1. Graduate Attributes:

Graduate of M.Sc. Program in Ecology Should be Able to:

- 1.1.1-Apply the knowledge of Ecological Science and their related disciplines, applications and tools in solving scientific problems.
- 1.1.2-Apply the analytical methods in Ecology research.
- 1.1.3-Apply specialized knowledge in Ecology combined with related knowledge in professional practice.
- 1.1.4- Show awareness of the ongoing problems in the minor specialization.
- 1.1.5- Use appropriate technological resources to serve and improve the professional practice.
- 1.1.6- Communicate effectively and lead teams.
- 1.1.7- Show awareness of his/her role in community development and preservation of the environment in light of global and local changes.
- 1.1.8- Share in multidisciplinary team work and be flexible for adaptation and working under contradictory conditions.
- 1.1.9- Hold professional values that maintain individuality, positive thinking and self-confidence.
- 1.1.10- Collect, summarize and present data, undertake professional and ethical responsibilities.

1.2. Knowledge and Understanding:

Students analyze how scientific knowledge is developed and will understand important features of the process of scientific inquiry. By the end of the program, the M.Sc. holder must have precise knowledge in different areas and research fields in zoology and be able to:

- 1.2.1- Investigate the advanced knowledge and training in one or more areas of Ecology with more specific subject-related skills in one of these areas.
- 1.2.2- Explain the theoretical and practical knowledge of various Ecological aspects, their knowledge which are required for professional activities in the field of Ecology research career.

- **1.2.3-** Demonstrate a comprehensive understanding of essential literature in their specific research area.
- 1.2.4- Define the scientific progress in the area of his/her minor specialty.
- 1.2.5-Write on the routine applied for interpreting and analyzing Ecological information.
- 1.2. 6- Illustrate the principles of ethics in scientific studies and research.

1.3. Intellectual Skills

Students will apply the following to inquiry intellectual practices:

- 1.3.1- Criticize approach to any Zoological and environmental problems which they may encounter.
- 1.3.2- Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.3.3-Perform perfectly the modern professional practice in the minor specialty of Zoology.
- 1.3.4- Apply a significant information gathering and analytical skills in an area of applied research in Zoology.
- 1.3.5- Develop lines of argument and appropriate judgments in accordance with the scientific theories and concepts.
- 1.3.6- Create plan to develop performance in the minor area of specialty.
- 1.3.7- Apply appropriate physical principles to create and analyze system components
- 1.3.8- Evaluate the risks in professional practices in the minor area of specialty.
- 1.3.9-Analyze and estimate knowledge in the area of minor specialty and use it in solving research problem.
- 1.3.10- Reconstruct the available resources effectively and develop them.
- 1.3.11- Differentiate between subject-related theories and assess their concepts and principles.
- 1.3.12- Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.3.13- Construct several related integrated information to confirm, make evidence and test hypothesis.
- 1.3.14- Use theories of zoology to interpret results.

1.4. Professional and practical skills:

Students will be encountered important features of the process of scientific inquiry and by the end of the program, the M.Sc. holder must be able to:

- 1.4.1- Perform the skills of analytical biological information in selecting the appropriate biological instrumentations and laboratory techniques in various fields of Zoology.
- 1.4.2- Plane, design, conduct and report on the investigated data, using appropriate techniques and considering scientific guidance.
- 1.4.3- Store sufficient idea for methods of collection, classification, preservation and analysis of animal samples.
- 1.4.4- Apply techniques and tools considering scientific ethics.
- 1.4.5- Perform research in Zoological sciences and demonstrate proficiency in the techniques and methods appropriate for their research area in minor specialty.
- 1.4.6-Design and conduct a research project and be able to present the results to an appropriate forum both in oral and in written format.
- 1.4.7- Proficiently teach the laboratory sections in Zoology as well as one specialty area and able to compete positively for jobs in academic and private area.

- 1.4.8- Collect evidences to test and confirm the scientific hypothesis in the field of minor specialty.
- 1.4.9- Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 1.4.10- Use the national standards for laboratory equipment which are essential for practical work.

1.5. General and Transferable Skills.

By the end of the program, the M.Sc. holder must be able to:

- 1.5.1- Oral and written communicate and exchange the information effectively through seminars and discussion meetings.
- 1.5.2- Effectively uses information and communication technology and identifies roles and responsibilities, and their performing manner.
- 1.5.3- Think independently, set tasks and solve problems on scientific basis.
- 1.5.4- Work in group effectively, manages time and communicates with others positively.
- 1.5.1- Consider community linked problems, ethics and traditions and acquire self- and long life-learning.
- 1.5.5- Deal with scientific data in Arabic, English or other languages.
- 1.5.6- Apply effectively scientific models, systems, , information technology, and tools and deal with scientific patents, also, exhibit the sense of beauty and neatness.
- 1.5.7- Fit the ethics of scientific research.

2- Curriculum Structure and Contents:

- 7.1- Program duration: At least two years for the thesis preparation.
- Y.2- Program Structure: Thesis in different branches of zoology.

Thesis

The thesis of M.Sc. program in Ecology is a formal written document representing sustained research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods courses will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis will be reviewed and approved by the candidate's supervising professor and external academic review committee.

a. The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions
- References.

b. Language of the thesis:

The thesis must be written in English language accompanied by a summary in Arabic.

c. Formation of Examiners Committees

A committee is selected by zoology Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

3. Program Admission Requirements:

An applicant for admission to the M.Sc. program in zoology should hold an B.Sc. degree in zoology with a minimum grade of (Good = 70%)

4- Program Student Evaluation

- Courses of pre-master academic year
- At least one published paper
- Written thesis
- Public hearing
- Defense exam

A. Program Specification

Program Title	Master of Ecology
Award	Master of Ecology
Parent Department	Zoology Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Prof. Abdel Naieem I. Al-Assiuty
External Evaluator(s)	
QAA Benchmarking	Academic Reference Standards (ARS)
Standards	
Other Reference Points	Bioscience, Egyptian Code of Assessment
Date of intake	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

This program is designed to:

study the nature of environmental problems and methodologies of evaluation. Show basic technological environmental issues and problems on development of relevant skills in environmental analysis, planning, management and control.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this program students should be able to:

- A9. Identify natural systems and processes.
- A10. Mention scientific principles and skills of scientific, social, philosophical, economic, ethical, legislative and political concepts.
- A11. Show a range of environmental problems and express how to improve decisions.

B. Intellectual skills:

They will also acquire the ability to:

- B18. Explore effective solutions for problems involving complex information.
- B19. Analyse and synthesise diverse information in a critical manner.
- B20. Formulate a hypothesis, plan and execute research or development work.
- B21. Evaluate the outcomes and draw valid conclusions.

C. Professional and practical skills:

- C16. plan and conduct research supported by current literature, utilising relevant technologies.
- C17. Undertake laboratory investigations in a responsible, safe and ethical manner.

D. General and transferable skills:

- D22. Communicate about a subject clearly, confidently and effectively using a range of presentational techniques.
- D23. use the internet/electronic resources to obtain subject specific information, and apply numerical and IT skills with confidence and accuracy.
- D24. work with others as a part of a team to collect data and/or to produce reports and presentations
- D25. study independently, set realistic targets and plan work and time to meet targets within deadlines.

3. Academic standards

3.A academic references of standards (Benchmarks):

Academic reference standards (ARS)

4. Curriculum Structure and contents:

4.A	Programme duration: one year				
4.B	Programme structure				
4.B.1	Number of contact hours	per Week:			
		Lectures	6	Lab.	6
	Overall Contact hours	Lectures	10	Lab.	8
4.B.2	Number of contact hours	Compulsory	6	Optional	6
4.B.3	Thesis	<u> </u>			

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Program ILOs Covered
Three o	f the first five courses are ory:			
1	Freshwater Ecology	2	2	KU, I, P,T
2	Marine ecology	2	2	KU, I, P,T

3	Desert Ecology	2	2	KU, I, P,T
4	Soil biology	2	2	KU, I, P,T
5	Biostatistics	1	-	KU, I,P, T
6	Computer	1	1	KU, I, P,T

6. Programme admission requirements

The applicants must have obtained a Bachelor's degree, or its equivalent, in Zoology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (70%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

	0	
Evaluator	Tool	Sample
1. Senior students	Applied	
2. Alumni	Applied	
3. Stakeholders(Employers)	Applied	
4. External Evaluator(s)(External Examiner(s))	Applied	
5. student questionnaire	Applied	A questionnaire applied on courses individually

We certify that all of the information required to deliver this program is contained in the above specification and will be implemented. All course specifications for this program are in place

Name	Signature	Date
Programme Coordinator: Prof. Abdel Naieem I. Al-Assiuty (أ. د. عبد النعيم ابراهيم الأسيوطي)		/9/2014
Head of Quality Assurance Unit: Prof. Hoda Kamal Elsayed (أ. د. هدى كمال السيد)		/9/2014
Dean of the Faculty: Prof. Tarek Fayed (أ. د. طارق فايد)		/9/2014

M.Sc. Courses: Programme Matrix

Programm					-	Acad	lem	ic s	tan	dar	ds iı	ntei	nde	d le	arn	ing	out	con	nes	ILO	s				
intended learning outcomes	U		ow ar	١d	_	g	In	tel	lec	tu	al s	kil	ls	P	rac	tica	als	kil	ls	Transferable skills					
ILOs	1	2	3	4	5	6	1	2	3	4	5	6	7	1	2	3	4	5	6	1	2	3	4	5	6
A1. identify natural systems	٧																								
A2. mention scientific principles	√																								
A3. show a range of environm ental problems		√ 																							
B1. expl ore effective solution s																									
B2. anal yse and synthesise informati		V					V						V												
B3. for mulate a hypothesi s, plan		V					V																		
C1. pla n and conduct research supported by current literature								7																	
C2. und ertake laboratory investigati						V									V		V								

Programme Title: Master of Science (M.Sc.) degree in Ecology

D1. communicate about a subject clearly															٧					
D2. use the internet/electronic resources																٧				
D3. work with others as a part of a team																		٧		
D4. study independently																	٧			
D5. Thesis			٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

Course - Programme ILOs Matrix (Curriculum Map)

Course title						Intend	led lea	rning	outco	mes II	LOs		
		KU				I]	P		7	Γ	
	A1	A2	A3	B 1	B2	В3	B4	C1	C2	D1	D2	D3	D4
Freshwater Ecology	√	٧	٧	٧	٧	٧	٧	٧	٧				
Marine ecology	٧	٧	٧	٧	٧	٧	٧	٧	٧				
Desert Ecology	٧	٧	٧	٧	٧	٧	٧	٧	٧				
Soil biology	٧	٧	٧	٧	٧	٧	٧	٧	٧				
Biostatistics					$\sqrt{}$			٧	٧				
Computer								٧		٧	٧	٧	٧

Head of Department:

B. Course Specification

Course Title	Freshwater Ecology	
Course Code	1621	
Academic Year	2014/2015	
Coordinator	Prof. Abdel Naieem	I. Al-Assiuty
Other Staff	Prof. Mohamed H. N El-Gamal	Iona, Prof. Naglaa Geasa and Prof. MonaM.
Level	Preliminary students	of Msc
Semester	Continuous academic	c year
Pre-Requisite		
Course	Lecture	28 x 2h lectures
Delivery		
	Practical	28 x 2h practicals
Parent	Zoology Department	
Department		
Date of	September, 2014	
Approval		

1. Aims

Students will survey major taxonomic groups of aquatic organisms and study morphological and physiological adaptations that allow aquatic biota to occupy dilute and dynamic freshwater habitats. Although emphasis will be placed on locally indigenous species, globally significant freshwater issues will be discussed. These topics include the effects of water pollution on freshwater biota, freshwater distribution and abundance, and the future of freshwater.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A4. Describe the taxonomy, ecology and life histories of organisms that inhabit inland waters.
- A5. explain how aquatic organisms are closely linked to the chemical and physical environment
- A6. show the diversity of running water.
- A7. mention the human impact.

B. Intellectual skills:

They will also acquire the ability to

- B1. examine the interrelationships between physical and biological factors.
- B2. assess the specific environmental factors and the diversity of running water.
- B3. develop the process acting in running water.
- B4. evaluate the human modification of the stream.

C. Professional and practical skills:

- C1. detect functional and structural characteristics of river system.
- C2. demostrate ecological, hydrological and geomorphological processes.

D. General and transferable skills:

- D1. **Communication**: write reports including graphical material and give oral presentation. communicate in written, verbal, graphical and visual forms.
- D2. IT skills: use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills and to seek and apply to suitable employment. use a number of computer packages to present information. use PC to write, in an acceptable format, an essay on a biological subject.
- D3. **Problem solving**: explore, analyse, and find effective solution for problem involving complex information.
- D4. **Working with others**: work with other as a part of a team to collect data and/or to produce reports and presentations.
- D5. **Self-learning**: study independently, set realistic targets and plan work and time to met targets within deadlines.

3. Content

Lecture 1	Introduction and syllabus.
Lecture 2	Organic matter in lotic ecosystems
Lecture 3	Nutrient dynamics
Lecture 4	Transport and transformation of nutrients
Lecture 5	Nutrient concentration of nutrients
Lecture 6	Distributional pattern and resource partitioning
Lecture 7	Experimental studies of competition
Lecture 8	Physical factors of importance to the biota
Lecture 9	Autotrophs
Lecture 10	Heterotrophic energy sources
Lecture 11	Microobial loop

Practical contents	Practical applications are related to the above topics.
Assessment	Modification and running waters by humankind
Lecture 28	Transformation of the lands
Lecture 27	Functional basis of drift
Lecture 26	The river continuum concept
Lecture 25	Organic matter budgets
Lecture 24	Fate of dissolved and particulate organic matter
Lecture 23	The bicarbonate buffer system, alkalinity and hardness
Lecture 22	Major dissolved components of river water
Lecture 21	Dissolved gases
Lecture 20	Brief history of river modification
Lecture 19	Grazing on lotic phytoplankton
Lecture 18	Herbivory on macrophytes
Lecture 17	Periphyton-grazer interactions
Lecture 16	Predator control of prey distribution and abundances
Lecture 15	Choice and vulnerability
Lecture 14	Lotic food web
Lecture 13	Feeding ecology of riverine fishes
Lecture 12	Invertebrate consumers

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Internet and library research
- Writing Reports
- Assessments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	KU, I, P.T	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Essential Books:Stream ecology structure and function of running waters by J David Allan (1995)
- Recommended Books: The ecology of aquatic insects by Allan, J. D. (1984)

Periodicals, Web sites: Hydrobiologia, Oikos, Ecology.

7. Facilities required for teaching and learning

- Projectors; Video, Overhead and Slide.
- Computer Presentations and Writing Boards.
- Museum Models. Library.

	Course Coordinator	Head of Department
Name	Prof. Abdel Naieem I. Al-Assiuty	Prof. Prof. Nabil Kamal Elfiki
Name (Arabic)	(أ. د. عبد النعيم ابراهيم الأسيوطى)	(أ. د. نبيل كمال الفقى)
Signature		
Date	/9/2014	/9/2014

Course						I	ntend	ed lea	ırning	goute	omes	ILOs			
title		K	U			-	Ī.		I)			T		
	A	A	A	A	В	В	В	В	C	C	D	D	D	D	D
	1	2	3	4	1	2	3	4	1	2	1	2	3	4	5
Introduction	٧	٧	٧	٧											
and syllabus.															
Syllabus.															
Organic	٧	٧	٧	٧											
matter in															
lotic															
ecosystems															
Nutrient	٧	٧	٧	٧											
dynamics															
Transport	V	٧	٧	٧											
and	V	•	•	\ \											
transformati															
on of															
nutrients															
N. data at	٧	٧													
Nutrient concentratio	V	V	٧	٧											
n of															
nutrients															
Distribution	٧	٧	٧	٧											
al pattern															
Experimenta	٧	٧	٧	٧											
I studies of															
competition															
Physical	٧	٧	٧	٧	٧	٧	٧								
factors of															
importance															
to the biota															
Autotrophs	٧	٧	٧	٧											
		٧	.,	٧											
Heterotroph ic energy	٧	\ \	٧	v											
sources															
Microobial	٧	٧	٧	٧											
loop															

		1			1		1	1	1			
Invertebrate consumers	٧	٧	٧	V								
Feeding ecology of riverine fishes	٧	٧	٧	٧								
Lotic food web	٧	٧	٧	٧								
Choice and vulnerability	٧	٧	٧	٧								
Predator control of prey distribution and abundances	٧	٧	٧	٧								
Periphyton- grazer interactions	٧	٧	٧	٧								
Herbivory on macrophyte s	٧	٧	٧	٧								
Grazing on lotic phytoplankt on	٧	٧	٧	٧								
Brief history of river modification	٧	٧	٧	٧	1	٧	٧					
Dissolved gases	٧	٧	٧	٧								
Major dissolved components of river water	٧	٧	٧	٧	1	1						

The bicarbonate buffer system	٧	٧	٧	٧										
Fate of dissolved	٧	٧	٧	٧										
Organic matter budgets	٧	٧	٧	٧										
The river continuum concept	٧	٧	٧	٧		V								
Functional basis of drift	٧	٧	٧	٧										
Transformat ion of the lands	٧	٧	٧	٧										
Modification and running waters by humankind	٧	٧	٧	٧	V	V	٧							
Practical applications are related to the above topics								V	V	V	V	V	√	V

Course Title	Marine Ecology	
Course Code	1622	
Academic Year	2014/2015	
Coordinator	Prof. Abdel Naieem I. Al-Assiut	ty
Semester	Continuous academic year	
Level	Graduate-M.Sc.	
Other Staff		
Pre-Requisite		
Course Delivery	Lectures 2 hours weekly	28 x 2h lectures
	Practicals 2 hours weekly	28 x 2h practicals
	Total	28 x 4h
Parent Department	Zoology Department	
Date of Approval	9-2014	

1. Aims

Marine ecology is, in its broadest sense, the study of the factors that determine the distribution and abundance of marine organisms. The primary objective of Marine Ecology course is to provide a comprehensive and stimulating introduction to marine ecological concepts and processes. Also to develop the basic skills used by marine ecologists to critically analyze and evaluate scientific research, through the discussion of research papers and the development of individual research projects. The students will get familiar with the importance of the Marine environment to human beings and human impact on the seas & oceans. Laboratory will stress studies of local fauna and natural habitats in the Red Sea & Mediterranean Sea with Suez Canal.

2. Intended Learning outcomes

A. Knowledge and understanding:

On completing the course, the students will be able to:

- A1. Define the fundamentals principles, concepts and terminology of Marine Ecology.
- A2. mention the marine ecosystems and relationship between various marine environments and their inhabitants.

- A3. describe the structure and function among marine communities.
- A4. demonstrate the relationships between marine organisms;

B. Intellectual skills:

On completing the course, the students will be able to:

- B1. discuss the physical and biological processes in the marine environment.
- B2. demonstrate how climate interacts with the marine environment and recent changes that have occurred in our oceans due to anthropogenic influence.

C. Professional and practical skills:

On completing the course, the students will be able to:

- C1. identify major groups of marine taxa, from single -celled phytoplankton through marine invertebrates (zooplankton and intertidal organisms) and vertebrates (fish, birds, and mammals).
- C2. estimate the salinity and alkalinity and techniques used by biologists for sampling and experimental design,
 - C3.explore Coral Reefs with associated marine communities.

D. General and transferable skills:

On completing the course, the students will be able to:

- D1. use computers and utilize the internet for writing scientific essays.
- D2. use the electronic library & search for information in library & from the web.
- D3. work effectively both in a team, and independently with Present data in oral and written presentations as Posters or ppt in seminar.
- D4. solve the problems of Marine Ecology such as marine pollution & bleaching of coral reefs.

3. Contents

Lectures

- Lecture 1 Introduction to Marine Ecology. Course specifications & objectives.

 Seas & Oceans and their relation to man.
- Lecture 2 Marine environment. Characters of sea water. Division of marine environment –Pelagic region, benthic region.
- Lecture 3 Unique properties of sea water Physical properties Salinity, temperature, light,... Chemical properties Oxygen, hydrogen ion concentration....

Lecture 4	Effect of Physical and Chemical environment on Marine Organisms.
Lecture 5	Ecological division of Marine Organisms. Plankton, benthos, nekton.
Lecture 6	$\label{thm:main} \mbox{Marine Zooplankton.} \mbox{Holoplankton , Meroplankton.} \mbox{ Adaptation of pelagic } \mbox{Organisms.}$
Lecture 7	Marine Zoobenthos. Main groups of Zoobenthos, Adaptation of benthic Organisms.
Lecture 8	Corals & coral reefs. Diversity of corals. Ecology and biology of hermatypic corals. Importance & threats (Anthropogenic & non- anthropogenic) of coral reefs.
Lecture 9	Biofouling. Fouling community, Prevention of Fouling .
Lecture 10	Marine borers. Wood borers, Rock borers, Coral reefs borers.
Lecture 11	Mariculture .Molluscan Mariculture, Crustacean Mariculture. Culture of other economic invertebrates.
Lecture 12	Marine pollution. Definition, Sources of pollution-Oil pollution. Effect of pollution on Marine Organisms.
Lecture 13	Associations of Marine Organisms. Symbiosis, commensalism, parasitism.
Lecture 14	Future with Marine environment. Climate change and marine communities. Coral reefs, Molluscs, crustaceans.
Lecture 14 Practical	-
	Coral reefs, Molluscs, crustaceans.
Practical	Coral reefs, Molluscs, crustaceans. (Laboratory)
Practical Practical 1	Coral reefs, Molluscs, crustaceans. (Laboratory) Introduction to laboratory Study of Marine Ecology.
Practical Practical 1	Coral reefs, Molluscs, crustaceans. (Laboratory) Introduction to laboratory Study of Marine Ecology. Instruments for sampling the Marine environment. Water sampling – Nansen reversing water bottle, thermometer,
Practical 1 Practical 2	Coral reefs, Molluscs, crustaceans. (Laboratory) Introduction to laboratory Study of Marine Ecology. Instruments for sampling the Marine environment. Water sampling – Nansen reversing water bottle, thermometer, salinometer, oxygen meter, ph meter, sechi disc.
Practical 1 Practical 2 Practical 3	Coral reefs, Molluscs, crustaceans. (Laboratory) Introduction to laboratory Study of Marine Ecology. Instruments for sampling the Marine environment. Water sampling – Nansen reversing water bottle, thermometer, salinometer, oxygen meter, ph meter, sechi disc. Physical & chemical properties of sea water. Biological sampling- Plankton net, dredges. Collection & preservation
Practical 1 Practical 2 Practical 3 Practical 4	Coral reefs, Molluscs, crustaceans. (Laboratory) Introduction to laboratory Study of Marine Ecology. Instruments for sampling the Marine environment. Water sampling – Nansen reversing water bottle, thermometer, salinometer, oxygen meter, ph meter, sechi disc. Physical & chemical properties of sea water. Biological sampling- Plankton net, dredges. Collection & preservation of Marine Organisms (Zooplankton & benthos). Under water observation- Diving by SCUBA (Self –Contained Underwater
Practical Practical 1 Practical 2 Practical 3 Practical 4 Practical 5	Coral reefs, Molluscs, crustaceans. (Laboratory) Introduction to laboratory Study of Marine Ecology. Instruments for sampling the Marine environment. Water sampling – Nansen reversing water bottle, thermometer, salinometer, oxygen meter, ph meter, sechi disc. Physical & chemical properties of sea water. Biological sampling- Plankton net, dredges. Collection & preservation of Marine Organisms (Zooplankton & benthos). Under water observation- Diving by SCUBA (Self –Contained Underwater Breathing Apparatus), Snorkeling, Glass boat, underwater photography.

- Practical 9 Mangroves, Fouling community.
- Practical 10 Marine borers. Wood borers (bivalves, Crustaceans), coral reef borers,

rock borers.

- Practical 11 Mariculture. The marine aquarium.
- Practical 12 Guidelines for writing an appropriate Lab Reports and research papers in Marine Ecology with presentations.
- Practical 13 Paper Discussions (a journal article).
- Practical 14 Practical exam.

4. Teaching and Learning Methods

- Lectures using Laptop & Data show, overhead projector and power point.
- Demonstration of Equipments for study Marine Ecology, preserved marine specimens or photographs of rare specimens, Field trip to coral reefs
- Home work (preparing an essay on specific topics related to the course & writing scientific reports) with oral presentation of essays or online research papers.

5. Student Assessment

Assessment Method	Assessment Length	Schedule	Proportion
Written Examination	3 Hour Examination	The 16 th Week	60%
Oral Assessment	Assessment Session	Term Final	-
Practical Examination	2 Hour Examination	The 15 th Week	40%
Semester work	Continuous Assessment		-

6. List of references

6-1 - course notes:

- Lectures notes Authorized by Zoology Department, Faculty of Science,
 - Tanta University, Egypt.
- Practical notes Authorized by Zoology Department, Faculty of Science,

Tanta University, Egypt.

6-2 - Essential Books:

- Charles J.R. Sheppard , Andrew Price , Callum Roberts (1992): Marine Ecology
- of the Arabian Region. Elsevier Science & Technology Books, 359 pp.

ISBN-13: 9780126394900

- Richard Stephen Kent Barnes, R. N. Hughes (1999): Introduction to Marine

Ecology. Blackwell Publishing, 300 pp. ISBN: 9780865428348

6-3 - Recommended Books:

- Castro, P. and Huber, M. (2007): Marine Biology. 6th. ed., McGraw-Hill Higher Education, Boston, 460 PP.
- Karleskint, G. (1998): Introduction to Marine Biology. Saunders College Publishing, USA, 378 pp.
- J. W. Nybakken, and M. D. Bertness. 2004. Marine Biology: An Ecological

Approach. 6th Edition.Benjamin Cummings and Addison Wesley Longman, Inc., San Francisco, CA. 516 pages.

- Pemert, G. and Ormond, R. (1981): Red sea coral reefs. Marine life of Saudi
- Arabia. 1st. Ed. Kegan Paul international, London, 192 pp.
- Vine, P. (1986): Red sea Invertebrales. Immel publishing, Great Britain, 50 PP.
- Wallace, C. C. (1999): Staghorn corals of the world: A revision of the coral Genus *Acropora*. CSIRO Publishing, Australia, 421 pp.
- -Wickler, W. (1973): The marine aquarium. T.F.H. Publications, Inc. Ltd., U.S.A., 112 PP.

6-4 – Periodicals (journals), Web sites, etc

Search Engines

http://www.google.com & http://www.alltheweb.com

Numerous other Search Engines help students to search by keywords.

Marine Ecology (Journal)

http://www3.interscience.wiley.com/journal/

Journal of Experimental Marine Biology and Ecology

www.elsevier.com/locate/jembe

JMBA (The Marine Biological Association of the United Kingdom)

An international journal with a worldwide distribution publishing original research on all aspects of marine biology

journals.cambridge.org/jid_MBI

Marine Biology Book website: http://www.mhhe.com/castrohuber6e

Marine Biology

International Journal on Life in Oceans and Coastal Waters

www.springer.com/life+sci/ecology/journal/227

Limnology and Oceanography (Journal): www.aslo.org/lo/

Advances in Marine Biology, Annual Reviews of Ecology and Systematics

Journal of the Marine Biological Association of the UK

Marine Ecology Progress Series, Molecular Ecology, Oceanography and Marine Biology: An Annual Review Oecologia

Trends in Ecology and Evolution

7. Facilities required for teaching and learning

- Computer halls for Data show with laptop, video clips, films, and overhead projector & transparence sheets.
- internet and well equipped laboratory.
- Field trips, and course website.

Recommendations

- 1- Internet assignement with scientific Poster or ppt and Oral Presentations about specific topics related to the course. Each student will look up information on the internet. Throughout the semester, data will be gathered. Posters or ppt will be presented orally during the last scheduled lab session.
- 2-Course Website: The course website contains all the information present in this syllabus plus additional resources including downloadable course notes, laboratory manuals, required and supplemental readings, animations, videoclips and announcements.

	Course Coordinator	Head of Department
Name	Prof. Abdel Naieem I. Al-Assiuty	Prof. Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. عبد النعيم الأسيوطي	(أ. د. نبيل كمال الفقى)
Signature Date	/9/2014	/9/2014

Course title		Intended learning outcomes ILOs											
		K	U		I	I P					7	Γ	
	A1	A2	A3	A4	B1	B2	C 1	C2	C3	D1	D2	D3	D4
Introduction to Marine Ecology.	٧			٧									
Marine environment. Characters of sea water		٧	٧	٧									
Unique properties of sea water – Physical properties – Salinity				٧	٧								
Effect of Physical and Chemical environment on Marine Organisms.			٧	٧	٧								
Ecological division of Marine Organisms.							٧						
Marine Zooplankton.			٧	٧			٧						
Marine Zoobenthos. Main groups of Zoobenthos, Adaptation of benthic Organisms.							√						
Corals & coral reefs.							٧						
Biofouling. Fouling community							٧						
Marine borers. Wood borers,							٧						
Mariculture							٧						

.Molluscan Mariculture, Crustacean Mariculture										
Marine pollution.										
Associations of Marine Organisms.										
Future with Marine environment.					V					
(Laboratory)		ı					I			
Introduction										
Instruments for sampling the Marine environment.						٧		٧		
Physical & chemical properties of sea water.		٧	٧	٧	٧	٧	٧			
Biological sampling- Plankton net , dredges.										
Under water observation- Diving by SCUBA										
Marine Zooplankton: Maine groups. Holoplankton, Meroplankton.										
Marine Zoobenthos: Maine groups of Zoobenthos.										
Diversity of corals								٧		

Mangroves, Fouling community.								
Marine borers. Wood borers								
Mariculture. The marine aquarium.								
Guidelines for writing an appropriate Lab Reports					٧	٧	٧	٧
Paper Discussions (a journal article).					٧	٧	٧	٧

Course Title	Desert Ecology	
Course Code	1623	
Academic Year	2014/2015	
Coordinator	Prof. Mohamed A. K	halil
Other Staff	Prof. Abdel Naieem	I. Al-Assiuty, Prof. Hala M. Abdel Lateif
	Bassiony	
Level	Preliminary of Msc	
Semester	Continuous academic	year
Pre-Requisite		
Course	Lecture	28 x 3h lectures
Delivery		
	Practical	28 x 4h practicals
Parent	Zoology Department	
Department		
Date of	9/2014	
Approval		

1. Aims

This course provides students with an opportunity to study desert organisms in their natural habitats. The major course topics will include desert plant adaptations, desert animal adaptations and life zones of the desert. An emphasis will be placed on the ecological interrelationships found among desert organisms and the biotic factors of the desert.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A1. identify the desert biota
- A2. state record the life zones of the desert.
- A3. explain the ecology of desert biome.
- A4. mention the behavioural adaptation of desert biota.

B. Intellectual skills:

They will also acquire the ability to

- B1. analyze the effect of environmental changes on desert organisms.
- B2. predict the solution for problems facing desert animals.

C. Professional and practical skills:

- C1. explain incorporated examples of desert biota
- C2. observe common features of desert fauna
- C3. observe the structure of some typical desert communities
- C4. recognize the morphological adaptation of desert organisms

D. General and transferable skills:

- D1. **Communication**: write reports including graphical material and give oral presentation. communicate in written, verbal, graphical and visual forms.
- D2. IT skills: use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills and to seek and apply to suitable employment. use a number of computer packages to present information. use PC to write, in an acceptable format, an essay on a biological subject.
- D3. **Problem solving**: explore, analyse, and find effective solution for problem involving complex information.
- D4. **Working with others**: work with other as a part of a team to collect data and/or to produce reports and presentations.
- D5. **Self-learning**: study independently, set realistic targets and plan work and time to met targets within deadlines.

3. Content

- Lecture 1 Introduction and syllabus.
- Lecture 2 The desert environment: Radiation, heat and temperature.
- Lecture 3 The desert environment: wind and water.
- Lecture 4 The desert environment: Nutrition.
- Lecture 5 Escape from the desert environment: Ephemerality and micro-climate exploitation in plants.
- Lecture 6 Escape from the desert environment: Diapause and temporary pond inhabitants.
- Lecture 7 Escape from the desert environment: Aestivation.
- Lecture 8 Escape from the desert environment: seasonal migration.
- Lecture 9 Escape from the desert environment: retreat.
- Lecture 10 Tolerance of the desert environment: I-Morphological adaptation in plant and animals
- Lecture 11 Tolerance of the desert environment: Morphological adaptation a-Arthropod cuticle
- Lecture 12 b- Vertebrate integument and pelage
- Lecture 13 c- Animal colour
- Lecture 14 d- water storage, ectopic storage of fat
- Lecture 15 e- shape and size

Lecture 16	Tolerance of the desert environment: II- Physiological and behavioural adaptations										
Lecture 17	Tolerance of tissue to high temperature										
Lecture 18	Tolerance of dehydration										
Lecture 19	Cold tolerance, adaptative heterothermy										
Lecture 20	Behavioural thermoregulation										
Lecture 21	Osmoregulation in arthropods and in desert vertebrates										
Lecture 22	Specialization respiration and transpiration, imbibition of fog and water vapour										
Lecture 23	Reproduction in desert environment										
Lecture 24	Structure of some typical desert communities: Namib desert, south Amrican coastal desert,										
Lecture 25	Structure of some typical desert communities: The Sahra, Central Asia, North America deserts										
Lecture 26	Functional aspects of desert communities: Production, limiting factor,										
Lecture 27	Functional aspects of desert communities: Decomposition, rates of energy and nutrient cycling. Population dynamics and evolution of predator-pry interaction.										
Lecture 28	Man and the desert										
Assessm.											

Practical The practical sessions are related to the above topics. part

4. Teaching and Learning Methods

- Lectures Practical classes
- Internet and library research
- Writing Reports Assessments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

*KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential Books:

Louw G. and Seely M. Ecology of Desert Organisms. London, UK: Longram, 1982.

Recommended Books: Effects of solar radiation on the sensible heat exchange of mammals. Hutchinson, J. C. D., Brown, G.D. and Allen, T.E.

Periodicals, Web sites:

7. Facilities required for teaching and learning

- Projectors; Video, Overhead and Slide.
- Computer Presentations and Writing Boards.
- Museum Models.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Mohamed A. Khalil	Prof. Prof. Nabil Kamal Elfiki
Name (Arabic)	(أ. د. محمد أحمد خليل)	(أ. د. نبيل كمال الفقى)
Signature		
Date	9/2014	9/2014

Course title						Ir	ntende	ed lea	rning	outc	omes	ILOs	S		
		K	U		-	I		I	•				T		
	A	A 2	A 3	A	B	B 2	C 1	C 2	C 3	C 4	D	D 2	D	D 4	D 5
Introduction and syllabus.	<u>1</u> √	2	3	4	1	2	1	2	3	4	1	2	3	4	0
The desert environment: Radiation, heat and temperature.	٧														
The desert environment: wind and water.	٧				٧	٧									
The desert environment: Nutrition.	٧				٧	٧									
Escape from the desert environment: Ephemerality and microclimate exploitation in plants.	V				٧	٧									
Escape from the desert environment: Diapause and temporary pond inhabitants.	V				٧	٧									
Escape from the desert environment: Aestivation.	٧				٧	٧									
Escape from the desert environment:	٧				٧	٧									

					I				l		
seasonal											
migration.											
Escape from	٧				٧	٧					
the desert						-					
environment:											
retreat.											
Tolerance of	٧	٧			٧	٧					
the desert											
environment:											
I-											
Morphologica											
I adaptation											
in plant and											
animals											
Tolerance of	٧	٧									
the desert											
environment:											
Morphologica											
I adaptation											
a- Arthropod											
cuticle											
b- Vertebrate	V	V									
	٧	٧									
integument											
and pelage											
c- Animal	٧	٧									
colour											
d water			1								
d- water			٧								
storage, ectopic											
storage of fat											
Storage Or rat											
e- shape and			٧								
size											
Tolerance of			٧	٧							
the desert											
environment:											
II-											
Physiological											
and											
behavioural											
	L	L		L	ı	L	l		l		

	1		ı		l					
adaptations		1								
Tolerance of		٧	٧							
tissue to high										
temperature										
- 1		.	+ .							
Tolerance of		٧	٧							
dehydration										
Cold		٧	٧							
tolerance,										
adaptative										
heterothermy										
Behavioural				٧						
thermoregula										
tion										
			1							
Osmoregulati				٧						
on in										
arthropods										
and in desert										
vertebrates										
Specialization				٧						
respiration										
and										
transpiration										
Reproduction				٧						
in desert										
environment										
Structure of										
some typical										
desert										
communities										
		_	1							
Structure of										
some typical										
desert communities:										
The Sahra, Central Asia,										
North										
America										
deserts										

	1							1					
Functional													
aspects of													
desert													
communities:													
Production,													
limiting													
factor,													
Functional													
aspects of													
desert													
communities:													
Decompositio													
n, rates of													
energy and													
nutrient													
cycling.													
Population													
dynamics and evolution of													
predator-pery													
interaction.													
Man and the													
desert													
The practical					٧	٧	٧	٧	٧	٧	٧	٧	٧
sessions are													
related to the													
above topics													
			1					1					

Course Title	Soil Biology	
Course Code	1624	
Academic Year	2014/2015	
Coordinator	Prof. Abdel Naieem I.	Al-Assiuty
Other Staff	Prof. Mohamed A. K	nalil, Prof. Hala M. Abdel Lateif Bassiony
Level	Preliminary of Msc	
Semester	Continuous academic	year
Pre-Requisite		
Course	Lecture	28 x 2h lectures
Delivery		
	Practical	28 x 2h practicals
Parent	Zoology Department	
Department		
Date of	September, 2014	
Approval		

1. Aims

The course aims at conveying a deeper understanding of soil organisms and their interactions with the abiotic and biotic environment of the soil in agricultural and forest ecosystems.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A1. mention the role of soil organisms in decomposition processes, plant nutrition, nutrient leaching and biogeochemical fluxes
- A2. explain carbon and nitrogen cycling in the plant/soil system
- A3. show biological differences between soils in different ecosystems
- A4. describe basic biology and trophic strategies of fungi, bacteria and soil animals

B. Intellectual skills:

They will also acquire the ability to

B1. analyze the effects of environmental changes on soil organisms and the consequences for carbon and nutrient cycling.

B2. explore, analyze, and find effective solution for problem involving complex information

C. Professional and practical skills:

- C1. use recent changes in the classification system and soil taxonomy.
- C2. explain incorporated examples of soil contamination.
- C3. observe common features of the soil.
- C4. illustrate how soils can be best managed.

D. General and transferable skills:

- D1. **Communication**: write reports including graphical material and give oral presentation. communicate in written, verbal, graphical and visual forms.
- D2. IT skills: use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills and to seek and apply to suitable employment. use a number of computer packages to present information. use PC to write, in an acceptable format, an essay on a biological subject.
- D3. **Prpblem solving**: **Working with others**: work with other as a part of a team to collect data and/or to produce reports and presentations.
- D4. **Self-learning**: study independently, set realistic targets and plan work and time to met targets within deadlines.

3. Content

Lecture 13

Insecta

Lecture 1	Introduction and syllabus.
Lecture 2	The soil environment: minerals and organic composition of the soil
Lecture 3	soil temperature, soil moisture, soil atmosphere and light
Lecture 4	Soil-forming processes and soil types, soil classification
Lecture 5	Mull and Mor
Lecture 6	Grassland soils
Lecture 7	Vegetation and soil types
Lecture 8	Classification of soil fauna: body size, presence, habitat preference and activity
Lecture 9	Protozoa, acoelomata and pseudocoelomata
Lecture 10	Annelides and Mollusca
Lecture 11	Onchyophora, crustace
Lecture 12	Myriapoda and tardigrada

Practical	The content of practical is related to the above topics
Assessm.	
Lecture 28	Preservation and identification of soil animals
Lecture 27	Extraction techniques of soil animals
Lecture 26	Energetic of the detritivore/carnivore food chain
Lecture 25	Energetic of the detritivore/decomposer food chain
Lecture 24	Primary production and nutrient cycling
Lecture 23	The functional character of soil community
Lecture 22	The effect of pesticides on the character of the soil fauna
Lecture 21	The fauna of grassland and forest soil compared
Lecture 20	The fauna of woodland and forest
Lecture 19	The fauna of grassland soil
Lecture 18	The character of the soil community: natural associations of species
Lecture 17	Population regulation
Lecture 16	The regulation of population size: Theory and practice, natality and mortality
Lecture 15	vertebrates
Lecture 14	Arachnida

4. Teaching and Learning Methods

- Lectures

part

- Practical classes
- Internet and library research
- Writing Reports
- Assessments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	P	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

Essential Books:

- Nyle C. Brady, The nature and properities of soils. Macmillan, Publishing Com.1990

Recommended Books

- John A. Wallwork. Ecology of soil animals

Periodicals, Web sites:

Pedobiologia,

European journal of soil biology

Applied soil ecology

7. Facilities required for teaching and learning

- Projectors; Video, Overhead and Slide.
- Computer Presentations and Writing Boards.
- Museum Models.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Abdel Naieem I. Al-Assiuty	Prof. Prof. Nabil Kamal Elfiki
Name (Arabic)	(أ. د. عبد النعيم ابراهيم الأسيوطى)	(أ. د. نبيل كمال الفقى)
Signature		
Date	9/2014	9/2014

Course title	Intended learning outcomes ILOs													
		K	U]	I		I)		T			
	A 1	A 2	A 3	A 4	B 1	B 2	C 1	C 2	C 3	C 4	D 1	D 2	D 3	D 4
Introduction and syllabus.														
The soil environment: minerals and organic composition of the soil			٧	٧										
soil temperature, soil moisture, soil atmosphere and light			٧	٧	٧	٧								
Soil-forming processes and soil types, soil classification			٧	٧	٧	٧								
Mull and Mor			٧	٧	٧	٧								
Grassland soils					٧	٧								
Vegetation and soil types			٧		٧	٧								
Classification of soil fauna: body size, presence, habitat preference and activity	V				٧	٧								
Protozoa, acoelomata and pseudocoelomata	٧				٧	٧								
Annelides and Mollusca	٧	٧			٧	٧								
Onchyophora,	٧	٧												

crustace										
		<u> </u>								
Myriapoda and tardigrada	٧	٧								
Insecta	٧	٧								
Arachnida			٧							
vertebrates			٧							
The regulation of population size: Theory and practice, natality and mortality			٧	٧						
Population regulation			٧	٧						
The character of the soil community: natural associations of species			٧	٧						
The fauna of grassland soil			٧	٧						
The fauna of woodland and forest					٧					
The fauna of grassland and forest soil compared					٧					
The effect of pesticides on the character of the soil fauna					٧					
The functional character of soil community					٧					

Primary production and nutrient cycling	V	′	√									
Energetic of the detritivore/decom poser food chain	V	′	✓									
Energetic of the detritivore/carniv ore food chain	٧	′	٧									
Extraction techniques of soil animals					٧	٧	٧	٧				
Preservation and identification of soil animals					٧	٧	٧	٧				
Practical part					٧	٧	٧	٧	٧	٧	٧	٧

Course Title	Biostatistics	
Course Code	1628	
Academic Year	2014/2015	
Coordinator	Prof. Abd-Elmo	neim Anwar Mohamed
Other staff		
Level	Prepararotory	level of MSc
Semester	Continuous aca	demic year
Pre-Requisite		
Course delivery	Lecture	28 x 1h lectures
	Practical	-
Parent	Mathematics D	epartment
Department		
Date of	9/2014	
Approval		

1. Aims

This module aims to provide M. Sc. students in biology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific biological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of this course the students should be able to:

- A9.raise students' consciousness concerning basic statistical issues such as statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A10. understand the basic principles of study design.
- A11. describe the types of variables that are used in biological research.
- A12. appreciate the role of sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

B5. carry out confidently simple essential statistical methods in biological research and to interpret results.

- B6. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B7. summarise data using graphical and tabular data.
- B8. interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C4. select and apply appropriate basic statistical methods for analysis of data.
- C5. use GraphPad package in data analysis.
- C6. tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D7. write report including graphical material.
- D8. present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D9. use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

- Lectures 1 Introduction: Variables and distributions.

 Lectures 2-3 Summarizing data.

 Lectures 4-5 Sampling variability of a mean.

 Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples.

 Lectures 8-9 ANOVA: Comparing more than two samples.
- Lecture10 Examination.
- Lectures 11-12 Sampling variability of proportions.
- Lectures 13-14 Analysis of categorical data; comparing two proportions
- Lectures 15-16 Regression and correlation.
- Lectures 17-18 Comparing correlations and regression. Multiple regressions.
- Lectures 19-20 Regression and correlation: Computer applications.
- Lectures 21-22 Comparing distribution: Computer applications.
- Lectures 23-24 Comparing means: Computer applications.
- Lectures 25-26 Comparing variances: Computer applications.

Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.

Lectures 29-30 Revision

Weeks 31, 32 Assessment

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 16 th Week	90%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill. *Recommended books*
 - Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
 - Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Abd-Elmoneim A.	Prof Qadry Zakaria
	Mohamed	
Name (Arabic)	أ. د. عبد المنعم محمد طعيمه	أ. د. قدری زکریا
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs													
		K	.U]				P			T	
	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introduction	٧	٧	٧	٧										
Summarizing data.	٧	٧	٧	٧										
Sampling variability of a mean.	٧	٧	٧	٧										
Analysis of quantitative data	٧	٧	٧	٧										
ANOVA	٧	٧	٧	٧	V	1	V	٧						
Examination	٧	٧	٧	٧										
Sampling variability of proportions	٧	٧	٧	٧										
Analysis of categorical data	٧	٧	٧	٧		٧								
Regression and correlation.	٧	٧	٧	٧										
Comparing correlations and regression.	٧	٧	٧	٧										
Regression and correlation	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing distribution	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing means	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing variances.	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧

Course Title	Computer						
Course Code	1627						
Academic Year	2014/2015	2014/2015					
Coordinator	Prof. Mohamed El	-Awady					
Other Staff	Prof. Mahmoud Ka Qadry Zakaria	amel, Prof. Ahmed El-Shishtawy, Prof.					
Semester	Continuous acader	mic year					
Pre-Requisite							
Course Delivery	Lecture	28 x 1h lectures					
	Practical	28 x 1h practicals					
Parent	Computer Centre						
Department							
Date of Approval	September, 2014						

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- Underpin academic work throughout postgraduate studies.
- Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

Upon successful completion of this course the students should be able to:

- A1. Demonstrate knowledge and understanding of the use of IT in the context of their postgraduate studies.
- A2. Know the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A3. Carry out necessary graphical, statistical and frequency analyses of different types of data.
- A4. Create powerful presentation using sophisticated software packages.
- A5. Make use of different internet resources.
- A6. Solve scientific problems using computer programming.
- A7. Make use of different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B1.Integrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

D1. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential-logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2 : Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video, etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lecture 8-9 Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Lecture 10-11 Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports to extract useful information

Lecture 12-13 Computer programming language

Assignment 6: Programming using Visual Basic 6

Solving real problems using a computer language

Lecture 14-15 Photo manipulation and enhancement using the photoshop

Assignment 7: Using the Photoshop program

Practicing on manipulation and enhancing of images

Lectures 16 Introduction to Data frequency analysis using Fourier analysis and Fourier transformation searching for periodicities

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Со	urse Coordinator	Head of Department				
Name Prof. Mohamed M. El-Awady		Prof. Elsayed Taha Eizq				
Name (Arabic) أ.د.محمد العوضي		أ.د. السيد طه رزق				
Signature						
Date	/9/2014	/9/2014				

Course title			Inter	nded le	earning	g outc	omes l	ILOs		
		KU					I	P	T	
	A 1	A2	A3	A4	A5	A6	A7	B 1	C1	D1
Methods for graphical representations, Data analysis and Data modeling										
Assignment 1 : Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Calculation of Slope and intersection of lines ,										
Best fitting for data,										
Extracting Trend , and Equations for acquired data (linear —exponential-logarithmicetc)										
Statistical Data analysis	٧	٧	٧	٧	٧	٧	٧	٧		
Assignment 2 : Using Application programs Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data	√	V	√	٧	√	√	√	V		
Creating powerful presentation including charts, images, video, etc and different attractive animations	٧	٧	√	٧	٧	٧	٧			
Assignment 3 : Using PowerPoint program	٧	٧	٧	٧	٧	٧	٧		٧	
Design a real and powerful presentation with different acquired skills										
Use of internet capabilities	٧	٧	٧	٧	٧	٧	٧			٧

and searching engines									
Assignment 4: Using the Internet	٧	٧	٧	٧	٧	٧	٧		٧
Life search on the internet for some real information									
Creating Data Base and related Queries and Reports	٧	٧	٧	٧	٧	٧	٧		
Assignment 5: Using Application programs Creating a real Data Base and apply different queries and reports to extract useful information	٧	٧	٧	٧	٧	٧	٧		
Computer programming language	٧	٧	٧	٧	٧	٧	٧		
Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language	٧	٧	٧	٧	٧	٧	٧		
Photo manipulation and enhancement using the photoshop	٧	٧	٧	٧	٧	٧	٧		
Assignment 7: Using the Photoshop program Practicing on manipulation and enhancing of images	٧	٧	٧	٧	٧	٧	٧		

M.Sc. Program of Experimental Zoology

1. Academic Standards:

The Academic Reference Standards (ARS) for the award of the M.Sc. degree in Experimental Zoology are designed to provide students with the knowledge and skills for proficiency in Zoological Science. The National Authority for Quality Assurance and Accreditation of Education (NAQAAE) for M.Sc. degree is used as the core of this academic standards to determine appropriate content and process skills for students. The relationship between science, our environment, and our everyday world is crucial to each student's success and should be emphasized. Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content.

The following Specific ARS for the M.Sc. in Experimental Zoology were approved by the Council of the Faculty of Science, Tanta University.

1.1. Graduate Attributes:

Graduate of M.Sc. Program in Experimental Zoology Should be Able to:

- 1.1.1-Apply the knowledge of Zoological Science and their related disciplines, applications and tools in solving scientific problems.
- 1.1.2-Apply the analytical methods in Zoology research.
- 1.1.3-Apply specialized knowledge in Zoology combined with related knowledge in professional practice.
- 1.1.4- Show awareness of the ongoing problems in the minor specialization.
- 1.1.5- Use appropriate technological resources to serve and improve the professional practice.
- 1.1.6- Communicate effectively and lead teams.
- 1.1.7- Show awareness of his/her role in community development and preservation of the environment in light of global and local changes.
- 1.1.8- Share in multidisciplinary team work and be flexible for adaptation and working under contradictory conditions.
- 1.1.9- Hold professional values that maintain individuality, positive thinking and self-confidence.
- 1.1.10- Collect, summarize and present data, undertake professional and ethical responsibilities.

1.2. Knowledge and Understanding:

Students analyze how scientific knowledge is developed and will understand important features of the process of scientific inquiry. By the end of the program, the M.Sc. holder must have precise knowledge in different areas and research fields in zoology and be able to:

1.2.1- Investigate the advanced knowledge and training in one or more areas of Zoology with more specific subject-related skills in one of these areas.

- 1.2.2- Explain the theoretical and practical knowledge of various Zoological aspects, their knowledge which are required for professional activities in the field of Zoology research career.
- **1.2.3-** Demonstrate a comprehensive understanding of essential literature in their specific research area.
- 1.2.4- Define the scientific progress in the area of his/her minor specialty.
- 1.2.5-Write on the routine applied for interpreting and analyzing Zoological information.
- 1.2. 6- Illustrate the principles of ethics in scientific studies and research.

1.3. Intellectual Skills

Students will apply the following to inquiry intellectual practices:

- 1.3.1- Criticize approach to any Zoological and environmental problems which they may encounter.
- 1.3.2- Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.3.3-Perform perfectly the modern professional practice in the minor specialty of Zoology.
- 1.3.4- Apply a significant information gathering and analytical skills in an area of applied research in Zoology.
- 1.3.5- Develop lines of argument and appropriate judgments in accordance with the scientific theories and concepts.
- 1.3.6- Create plan to develop performance in the minor area of specialty.
- 1.3.7- Apply appropriate physical principles to create and analyze system components
- 1.3.8- Evaluate the risks in professional practices in the minor area of specialty.
- 1.3.9-Analyze and estimate knowledge in the area of minor specialty and use it in solving research problem.
- 1.3.10- Reconstruct the available resources effectively and develop them.
- 1.3.11- Differentiate between subject-related theories and assess their concepts and principles.
- 1.3.12- Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.3.13- Construct several related integrated information to confirm, make evidence and test hypothesis.
- 1.3.14- Use theories of zoology to interpret results.

1.4. Professional and practical skills:

Students will be encountered important features of the process of scientific inquiry and by the end of the program, the M.Sc. holder must be able to:

- 1.4.1- Perform the skills of analytical biological information in selecting the appropriate biological instrumentations and laboratory techniques in various fields of Zoology.
- 1.4.2- Plane, design, conduct and report on the investigated data, using appropriate techniques and considering scientific guidance.
- 1.4.3- Store sufficient idea for methods of collection, classification, preservation and analysis of animal samples.

- 1.4.4- Apply techniques and tools considering scientific ethics.
- 1.4.5- Perform research in Zoological sciences and demonstrate proficiency in the techniques and methods appropriate for their research area in minor specialty.
- 1.4.6-Design and conduct a research project and be able to present the results to an appropriate forum both in oral and in written format.
- 1.4.7- Proficiently teach the laboratory sections in Zoology as well as one specialty area and able to compete positively for jobs in academic and private area.
- 1.4.8- Collect evidences to test and confirm the scientific hypothesis in the field of minor specialty.
- 1.4.9- Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 1.4.10- Use the national standards for laboratory equipment which are essential for practical work.

1.5. General and Transferable Skills.

By the end of the program, the M.Sc. holder must be able to:

- 1.5.1- Oral and written communicate and exchange the information effectively through seminars and discussion meetings.
- 1.5.2- Effectively use information and communication technology and identify roles and responsibilities, and their performing manner.
- 1.5.3- Think independently, set tasks and solve problems on scientific basis.
- 1.5.4- Work in group effectively, manage time and communicate with others positively.
- 1.5.1- Consider community linked problems, ethics and traditions and acquire self- and long life—learning.
- 1.5.5- Deal with scientific data in Arabic, English or other languages.
- 1.5.6- Apply effectively scientific models, systems, , information technology, and tools and deal with scientific patents, also, exhibit the sense of beauty and neatness.
- 1.5.7- Fit the ethics of scientific research.

2- Curriculum Structure and Contents:

- Y.1- Program duration: At least two years for the thesis preparation.
- Y.2- Program Structure: Thesis in different branches of zoology.

Thesis

The thesis of M.Sc. program in Zoology is a formal written document representing sustained research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods courses will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis will be reviewed and approved by the candidate's supervising professor and external academic review committee.

a. The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions
- References.

b. Language of the thesis:

The thesis must be written in English language accompanied by a summary in Arabic.

c. Formation of Examiners Committees

A committee is selected by zoology Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

3- Program Admission Requirements:

An applicant for admission to the M.Sc. program in zoology should hold an B.Sc. degree in zoology with a minimum grade of (Good = 70%)

4- Program Student Evaluation

- Courses of pre-master academic year
- At least one published paper
- Written thesis
- Public hearing
- Defense exam

A. Program Specification

Program Title	Master of Experimental Zoology
Award	Master of Experimental Zoology
Parent Department	Zoology Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Prof. Nabil Kamal Elfiki
External Evaluator(s)	applied
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Other Reference Points	Bioscience, Egyptian Code of Assessment
Date of intake	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

- To obtain broad, basic knowledge in the subject matter of this and related fields, with an emphasis on histochemistry, genetics, experimental embryology, immunology and radiobiology.
- To develop practical skills associated with experimental zoology research methods and an understanding of how they can be used by the student for completion of original research, which should provide a significant contribution to knowledge.
- To enable the acquisition of a comprehensive range of transferable skills.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this program the student will be able to:

A12. explain the information provided by biological staining-dyes, and the principles and application of histochemical techniques, immunohistochemical/immunofluorescence techniques and electron microscopy.

- A13. show the molecular bases of inheritance as well as the different principles and methods underpinning recombinant DNA technology and its application for human welfare.
- A14. describe embryology and the experimental systems for studying early embryonic development.
- A15. mention the immune system, the associated molecular genetic processes and how these events relate to the production of an effective immune system.
- A16. enumerate the various types and sources of ionizing radiation and their biological impact on living tissue at the molecular DNA, cellular, organ and whole body levels.

B. Intellectual skills:

They will also acquire the ability to:

- B22. formulate a hypothesis, plan and execute laboratory investigation, evaluate the outcomes and draw valid conclusions.
- B23. address selected contemporary issues related to zoological sciences.
- B24. assess critically the literature related to subjects under study.
- B25. integrate theory and practice.

C. Professional and practical skills:

- C18. plan and conduct research supported by current literature, utilising relevant technologies.
- C19. undertake laboratory work in a responsible, safe and ethical manner.

D. General and transferable skills:

- D26. communicate about a subject clearly, confidently and effectively using a range of presentational techniques.
- D27. apply numerical and IT skills with confidence and accuracy.
- D28. work both independently and in collaboration with others.
- D29. take responsibility for self-managed learning and personal/professional development.

3. Academic standards

3.A academic references of standards (Benchmarks):

Academic reference standards (ARS)

4. Curriculum Structure and contents:

4.A	Programme dura	tionr: one year				
4.B	Programme stru	cture				
4.B.1	Number of cont	Number of contact hours				
			Lectures	6	Lab.	6
	Overall	Contact hours	Lectures	10	Lab.	9
4.B.2	Number of conta	act hours	Compulsory	6	Optional	6
4.B.3	Thesis		'	L		

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Program ILOs Covered
Three o	of the first five courses are obligatory:			
1	Histochemistry	2	2	KU, I, P,T
2	Radiobiology	2	2	KU, I, P,T
3	Genetics	2	2	KU, I, P,T
4	Experimental embryology	2	2	KU, I, P,T
5	Immunology	2	2	KU, I, P,T
6	Biostatistics	1	0	KU, I,P, T
7	computer	1	1	KU, I, P,T

6. Programme admission requirements

Candidates must satisfy the general admission requirements of the University and Faculty in Biology and also hold B. Sc. in Zoology or its equivalent, with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.

- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	applied	
5. student questionnaire	applied	A questionnaire applied on courses individually

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place

Name	Signature	Date
Programme Coordinator:		
Prof. Nabil Kamal Elfiki		
(أ. د. نبيل كمال الفقى)		/9/2014
Head of Quality Assurance Unit:		
Hoda Kamal Elsayed		/9/2014
(أ. د. هدى كمال السيد)		
Dean of the Faculty:		
Prof. Tarek Fayed		/9/2014
(أ. د. طارق فايد)		

M.Sc. Courses: Programme Matrix
Programme Title: Master of Science (M.Sc.) degree in Expermintal Zoology

Programm intended		Academic standards intended learning outcomes ILOs																		
learning outcomes	ки				1				Р		Т									
ILOs	A	A	A	A	A	A	В	В	В	В	В	В	В	С	С	D	D	D	D	D
A1. ex	1	2	3	4	5	6	1	2	3	4	5	6	7	1	2	1	2	3	4	5
plain the information provided by biological staining-dyes		V																		
A2. sh ow the molecular bases of inheritance																				
A3. de scribe embryology and the experiment al systems																				
A4. me ntion the immune system.																				
A5. en umerate the various types and sources of ionizing radiation																				
B1. formulate a hypothesis, plan and execute laboratory investigatio n							√													
B2. address selected contempora ry issues related to zoological sciences.	V																			
B3. assess critically the literature.								V												
B4. integrate theory and practice.											√									
C1. plan and conduct research supported														V	√					

C2. undertake laboratory work in a responsible D1. communica te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with others.
laboratory work in a responsible D1. communica te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
work in a responsible D1. communica te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
responsible D1. communica te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
D1. communica te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
communica te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
te about a subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
subject clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
clearly D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
D2. apply numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
numerical and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
and IT skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
skills with confidence and accuracy D3. work both independen tly and in collaboratio n with
confidence and accuracy D3. work both independen tly and in collaboratio n with
and accuracy D3. work both independen tly and in collaboratio n with
accuracy D3. work both independen tly and in collaboratio n with
D3. work both independen tly and in collaboratio n with
both independen tly and in collaboratio n with
independen tly and in collaboratio n with
tly and in collaboratio n with
tly and in collaboratio n with
collaboratio n with
others
D4. take
responsibili
ty for self-
managed
learning

Course - Programme ILOs Matrix (Curriculum Map)

		Intended learning outcomes ILOs													
Course			KU					[1)]	Γ	
title	A	A	A	A	A	В	В	В	В	C	C	D	D	D	D
	1	2	3	4	5	1	2	3	4	1	2	1	2	3	4
Histochemis							٧	٧		٧	٧				
try															
Genetics		٧					٧	٧		٧	٧				
Experimenta			٧				٧	٧		٧	٧				
l embryology															
Immunology				٧	٧		٧	٧		٧	٧				
Biostatistics						1		٧							
computer								٧				٧	٧	٧	٧

B. Course specification

Course Title	Histochemistry					
Course Code	1611					
Academic	2014/2015					
Year						
Coordinator	Prof.Dr Nabila Ibrahi	m El-Desouki				
Other Staff	Prof.Dr Ahlam Said Abo Shafey; Prof.Dr Ahmed Abdel Naim Masoud; Ihab Mostafa Tosson					
Level	Preliminary students of Msc					
Semester	Continuous academic year					
Pre-Requisite						
Course	Lecture	28 x 2h lectures				
Delivery						
	Practical	28 x 2h practicals				
Parent	Zoology Department					
Department						
Date of	September 2014					
Approval						

Aims

To develop theoretical and understanding of the chemical information provided by biological staining-dyes, histochemical procedures enzymes and antibodies. It will provide information on normal & abnormal aspects of organ histology and the application of histochemical techniques, immunohistochemical/immunofluorescence techniques and electron microscopy. To provide practical skills of biological tissue preparation for microscopic examination, to apply different methods to gain different types of morphological information. This module should provide an opportunity to students understand the methods applied to develop practical skills in diverse histochemical staining procedures – dye, enzymes & antibodies, and to create an understanding of the more specialized techniques used in cellular and histopathology.

2. Intended Learning Outcomes

Upon successful completion of this course students should be able to:

A. Knowledge and understanding:

- A1. explain of why biological tissues need to be specially prepared for microscopic examination & how differing processing method can yield different types of morphological information & distinguish the abnormality of the cells including inflammation, neoplasia, atroply, hypertrophy, hyperplasia & metaplasia.
- A2. describe preparation of tissues for microscopy-dissection, fixation, embedding, sectioning.
- A3. mention of the principles theoretical and practical bases of the techniques used in the histochemical method, enzyme histochemistry, immunohistchemistry / immunofluorescence & electron microscopy.
- A4. show different types and modalities of microscopes, how they function and the differing information they can provide.
- A5. describe diverse histochemical staining procedures—dyes, enzymes and antibodies.

B. Intellectual skills:

- B1 evaluate a thorough comprehension of both the background knowledge techniques & recent advances in molecular & cellular methods
- B2 gain complete coverage of the analyse and distinguish between normal & pathogenic abnormal organs together with the cellular & molecular bases by application of IHC or IF or cytochemical methods.
- B3 contribute the understanding of biological tissue lesions & tumours by specific antibodies and markers, and the technical aspects of setting up of laboratory & interpreting respects.
- B4 determine the morphological and the special stained with different techniques, and interpretation of staining.
- B5 Formulate & test hypotheses using appropriate experimental design & analysis the data.

C. Professional and practical skills:

- C1 competent to handle, prepare & diverse stains, and able to comment on a wide range of specimens.
- C2 become proficient in the field of histology & hitochemistry and in applications in the field of immunohistochemistry & cytochemistry.
- C3 use laboratory- based methods to generate data.
- C4 use the scientific literatures & data bases effectively.

D. General and transferable skills:

- D1 use information of diverse histochemical techniques to capable for differentiate between normal & abnormal cells, tissues & organs.
- D2 evaluate information from a variety of sources, library, computer-assisted learning (CAL) & handouts
- D3 learn independently with open mindedness & critical enquiry.

3. Content

Lecture 1 The **concept of histochemistry**, what is ment by histochemistry , and its applications to serve other branches of science such as physiology ,ecology, pharmacy .etc.

- Lecture 2 **Tissue processing**: theories of fixation, choosing amongst the different fixatives for different tissues for different purposes, and the modes of action of each fixatives, tissue handling and what should be done to obtain a good specimen for examination for different research purposes i.e. different morphology as well as different chemical structures of each tissue.
- Lecture 3 **Staining process,** theories of dyeing, chemistry & classification of dyes, choosing the correct dyes for the purpose.
- Lecture 4 **Tissue analysis**, how to conclude facts and informations from the examined tissues.
- Lecture 5 **Tissue damage and repair**: study of normal structures of cells and tissues of some organs such as liver, kidney and skin and their response to injuries of different types, their morphology after injury and how, if possible, they get cured or be repaired.
- Lecture 6 **Cancer**: nature of cancer, difference between benign and malignant neoplasia, the structural alterations that are observed in malignant and plasia, the processes of invasion and metastasis, factors believed to cause cancer.
- Lecture 7 **Selected topics and revision**, discussion of different subjects that interest students and relate to their research projects, revision and question & answer session.
- Lecture 8 Immunostaining methods: a) immunohistochemical techniques (IHC): definition, antigen retrieval, IHC methods: a) peroxidase anti-peroxidase (PAP) method, b) avidin biotin complex (ABC) method, c) direct & indirect methods.
- Lecture 9 A continuous of IHC, d) labeled streptavidin biotin (LSAB) method, and d) polymeric methods, principles of procedures, significances and applications.
- Lecture 10 **b) Immunofluorescence techniques (IF)**: introduction, definition, fluorescence microscopy, procedures: fixation, permeabilization, direct & indirect IF, stains of specific cellular structures, mounting media, significances & applications.
- Lecture 11 **Inflammation:** introduction, definition, significance, symptoms & causes of inflammation. Types of inflammation: acute inflammation and chronic inflammation. Microscopic features of acute and chronic inflammation, and

differentiate between their cells using LM & TEM

- Lecture 12 Use some specific antibodies (CD4, CD8, CD34) / IHC to detect the inflammatory cells. Use frozen section to demonstrate the stored lysosomal enzymes in the cytoplasm of infiltrated leukocytes.
- Lecture 13 **Cytoskeletal protein filaments of red blood cells (RBCs)**: review of extracellular matrix filaments (cytoskeletal protein filaments): definition, types (microtubules, microfilaments & intermediate filaments), roles & functions. Types of cytoskeletal RBCs protein filaments (spectrin, actin, ankyrin,...), significances and functions.
- Lecture 14 Relationship of cytoskeletal RBC protein filaments and plasma cell membrane (lipids & proteins). Procedures to visualize cytoskeletal RBC protein filaments using indirect immunofluorescence technique.
- Lecture 15 **Cytochemistry**: introduction, subcellular organelles and their micromolecules (e.g. lipids, carbohydrades, proteins, enzymes, nucleic acids..etc). The objective of electron microscopic cytochemistry to visualize the intracellular localization of chemical reactions, enzyme activities, biochemical activities, antigenicity, etc.
- Lecture 16 **Electron Microscopy:** TEM & SEM (differences, uses and applications), a) preparation of biological materials for **TEM**: fixation (fixatives and methods of fixation), osmofication
- Lecture 17 A continuous of TEM: washing, dehydration and clearing, ultramicrotomy (sectioning) semithin & Ultrathin sections.

Staining and examination then photograph.

- Lecture 18 **b) SEM** process: fixation, osmofication , dehydration, drying (critical point drying), coating and examination, then photograph.
- Lecture 19 **SEM x-ray microanalysis,** electron micrograph interpretation.
- Lecture 20 **Polymerase chain reaction (PCR)** for gene amplification (specific segment of DNA), introduction, procedures, PCR optimization, practicle modifications & recent development in PCR technique.
- Lecture21 Uses of PCR: genetic fingerprinting-genotyping of specific mutations-cloning genes-paternity testing- comparison of gene expression Mutagenesis-Detection of hereditary diseases- Revers

Transcriptase –PCR (RT-PCR) for gene amplify mRNA.

Lecture 22	Study of the laser confocal microscopy.
Lecture 23	Immunocytochemistry: introduction, principles & function.
Lecture 24	Functional properties of antibodies (antigens, cell differentiation and maturation, production of poly and monoclonal antibodies).
Lecture 25	Immunocytochemical labels (enzyme labels, fluorescent labels, radiolabels).
Lecture 26	Mono, double and multiple labeling techniques.
Lecture 27	Detection of nucleic acids (histochemically, immunocytochemically, in situ hybridization).
Lecture 28	Neuro-anatomical techniques.

Practical	Topics	Week
Lab.1	Planning for a research project (by the students) using histochemistry and preparing the research tools needed for such a project.	1
Lab.2	Preparing the different agents required for the research project (i.e. fixatives, dehydrating agents, clearing agentsetc.) as well as staining solutions.	2
Lab.3	Tissue processing of different specimens for different organs of different nature such as brain, liver, kidney, gonads, different endocrine glandsetc, and using different staining techniques.	3
Lab.4	Measuring methods using an ocular and stage micrometers and photographing of selected tissue elements.	4
Lab.5	Reading and analyzing photographs.	5
Lab.6	Revision	6
Lab.7	Questions & answers.	7
Lab.8	Selection of the appropriate technique & antibodies for specific purpose & interpretation of the immunostains.	8
Lab.9	Differentiate microscopically between the acute and chronic inflammatory cells using histological staining & TEM.	9

Lab.10	Use frozen section to demonstrate the stored lysosomal enzymes(acid phosphatase) in the cytoplasm of infiltrated leukocytes, and use specific antibodies as CD4,CD8, CD34 & IHC to detect the inflammatory cells, e.g. in lung of asthma & in pancreas of diabetes.	10
Lab.11	Visualization of a) cytoskeletal intermediate protein filaments using IHC techniques with specific antibodies in normal & pathogenic abnormal of some organs, e.g. cytokeratin, vimentin in thyroid gland & liver; and desmin in heart, b) microfilament (actin) in muscles.	11
Lab.12	Visualization of cytoskeletal RBC protein filaments using indirect immunofluorescence technique by using fluorescence microscopy, e.g. spectrin & tubulin in normal & pathogenic abnormal RBCs.	12
Lab.13	Comparison the same specimen by using histological routine stain and IHC and /or immunofluorescene methods, e.g. RBCs in normal case & pathogenic abnormal one.	13
Lab.14	Study of some organs using different techniques as histological histochemical/IHC and TEM to compare between the results of each one, as hydrolytic enzymes & other inclusions; secretory cells & organelles.Examples:1) pancreas; normal & abnormal cells of pancreatic acini and islets of Langerhans.2) thyroid gland; normal & pathogenic hypoactivity & hyperactivity of thyrocytes, 3) stomach,	14
Lab.15	Electron microscopy (TEM & SEM), Principles, application and methods of preparation.	15
Lab.16	Magnifications, electron micrograph interpretation.	16
Lab.17	SEM x-ray microanalysis.	17
Lab.18	Electron microscopy in drug assessment and immunology.	18
Lab.19	Electron microscopic enzyme cytochemistry.	19
Lab.20	Immunocytochemical methods to detect specific proteins associated with subcellular structures (antibody-antigen interactions)	20
Lab.21	Thermal cycler for DNA: Making a cDNA library. Using RT-PCR to clone a single cDNA.	21
Lab.22	Different techniques to detection the nucleic acids	22
Lab.23	Mono labeling techniques to detect nucleic acids	23

Lab.24	Double labeling techniques.	24
Lab.25	Neuro-anatomical techniques (Cobalt chloride back filled techniques for staining the peripheral nervous system).	25
Lab.26	Neuro-anatomical techniques (Filling selected neurons with cobalt through cut axons).	26
Lab.27	A continuous of neuro-anatomical techniques (Cobalt staining of neurons by microelectrodes).	27

4. Teaching and Learning Methods

Revision

Lectures: including visual presentation using overhead projectors, PowerPoint presentation, blackboard and chalk, and seminars.

28

Practical classes: including laboratories, technique instruments, photomicrographs and microscopic slides.

5. Student Assessment

Lab.28

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references:

Recommended Books

- Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K. & Watson, J. 1989, 2nd Ed. Molecular Biology of the Cell. Garland Publishing, NY, London.
- Bancort, J. D. and Stevens, A. 2001, Theory and Practice of Hitological Techniques(Eds), Churchill Livingstone.
- Gurr, E. 1958, Methods of Analytical Histology and Histochemistry. Leonard Hill (Books) Ltd., London.
- Hamason, G.L. 1979, Animal Tissue Techniques. Freeman and Company. San Francisco.
- Larsson, L. I. 1988, Immunocytochemistry: Theory and Practice. CRC Press, Boca Raton, FL.
- Pearse, A.G.E. 1980, 4th Ed. Histochemisty, Theoretical and Applied. J & A. Churchill Ltd, London.

- Rogers, A.W. 1983, Cells and Tissues, an Introduction to Histology and Cell Biology, Academic Press, N.Y
- Thompson, S.W. 1966, Selected Histochemical and Histopathological Methods. Charles C. Thomas. Paplisher. Illinois.
- Troyer, H. 1980, Principles and Techniques of Histochemistry. Littles, Brown and Company, Boston.

Web Sites

- http://biowww.net/detail-176.html
- http://www.piercenet.com/Proteomics/browse.cfm?f1dID=F95B91A9-3DC1-4B56-8E.....

	Course Coordinator	Head of Department
Name	Prof. Nabila Ibrahim El-Desouki	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. نبيلة الدسوقى	أ. د.نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title]	Inten	ded	learn	ing (outco	mes	ILO	S				
			KU					I				1	P			T	
	A	A	A	A	A	В	В	В	В	В	C	C	C	C	D	D	D
The concept	<u>1</u> √	2	3	4	5	1	2	3	4	5	1	2	3	4	1	2	3
of																	
histochemistr																	
У																	
Tissue		٧	٧														
processing																	
Staining		٧	٧	٧	٧												
process,																	
Tissue analysis		٧															
Tissue								٧									
damage and																	
repair																	
Cancer								٧									
Selected																	
topics and																	
revision																	
Immunostaini			٧				٧										
ng methods:																	
a) immunohistoc																	
hemical																	
techniques																	
(IHC)																	
A continuous							√										
of IHC, d)																	
labeled																	
streptavidin																	
biotin (LSAB) method																	
applications.																	
b)				٧			V										
Immunofluore																	
scence																	

1 1	1			l						
techniques										
(IF)										
Inflammation	٧									
IIIIIaiiiiiatioii	٧									
Use some	٧									
specific										
antibodies										
(CD4, CD8,										
CD34) / IHC to										
detect the										
inflammatory										
cells										
Cytoskeletal	٧									
protein										
filaments of										
red blood cells										
(RBCs)										
Relationship of	٧									
cytoskeletal										
RBC protein										
filaments and										
plasma cell										
membrane										
Cytochemistry	٧									
Electron	٧	٧								
Microscopy										
a)TEM										
A continuous	٧	٧								
of TEM										
b) SEM	٧	٧								
<i>5</i> , 52.111	•									
SEM x-ray	٧	٧								
microanalysis,										
Polymerase	٧									
chain reaction	"									
(PCR)										
Uses of PCR	٧									

Study of the laser confocal microscopy.	٧													
Immunocytoc hemistry:	٧		1											
Functional properties of antibodies	٧													
Immunocytoc hemical labels	٧	٧	V											
Mono, double and multiple labeling techniques.	٧													
hybridization	٧	٧												
Neuro- anatomical techniques.	٧													
Lab content	٧													
Planning for a research project	٧			V		٧	٧	٧	٧	٧	٧	٧	٧	٧
Preparing the different agents required for the research project	٧					٧	٧	٧	٧	٧	٧	٧	٧	٧
Tissue processing of different specimens	٧					٧	٧	٧	٧	٧	٧	٧	٧	٧
Measuring methods using an ocular	٧					٧	٧	٧	٧	٧	٧	٧	٧	٧

Reading and analyzing photographs.	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
Revision	٧												
Questions & answers.	٧												
Selection of the appropriate technique & antibodies for specific purpose & interpretation of the immunostains.	٧				V	>	V	>	V	>	٧	٧	<
Differentiate microscopicall y between the acute and chronic inflammatory cells	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
Use frozen section to demonstrate the stored lysosomal	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
Visualization of a) cytoskeletal intermediate protein filaments	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
Visualization of cytoskeletal RBC protein filaments	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧

Comparison	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
the same specimen by													
using													
histological													
routine stain													
Study of some	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
organs using													
different													
techniques as histological													
Electron	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
microscopy													
(TEM & SEM,													
Magnifications	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
, electron													
micrograph													
interpretation.													
SEM x-ray	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
microanalysis.													
Electron	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
microscopy in													
drug													
assessment													
and													
immunology.													
Electron	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
microscopic													
enzyme cytochemistry.													
Immunocytoc	٧				٧	٧	٧	٧	٧	٧	٧	٧	٧
hemical													
methods to detect specific													
proteins													
associated													
with													
subcellular													
structures													

(antibody-															
antigen															
interactions)															
Thermal cycler	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
for DNA															
Different	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
techniques to															
detection the															
nucleic acids															
Mono labeling	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
techniques to															
detect nucleic															
acids															
Double	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
labeling															
techniques.															
Neuro-	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
anatomical															
techniques															
(Cobalt															
chloride back															
filled															
techniques															
Neuro-	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
anatomical															
techniques															
(Filling selected															
neurons with															
cobalt through															
cut axons). A continuous	٧		+				٧	٧	٧	V	٧	٧	V	٧	٧
	V						٧	٧	\ \	٧	٧	V	\ \	٧	٧
of neuro- anatomical															
techniques															
techniques	, ,	i I		1	1	1	1	I	1	1	1	1	1	1	1

Course Title	Radiobiology								
Course Code	1612								
Academic Year	2014/2015								
Coordinator	Asst. Prof. Ehab M. Tousson								
Other Staff									
Level									
Semester	One continuous academic year								
Pre-Requisite									
Course Delivery	Lecture	28 x 2h lectures							
	Practical	28 x 2h practicals							
Parent	Zoology Departn	nent							
Department									
Date of Approval	February, 2014								

This course will cover the principles of cell response to radiation, including tissue sensitivity, survival, repair and the latent effects of irradiated tissue. Topics to be covered include the development of radiation science, cellular targets for radiation action, target theory, physical/chemical factors affecting radiation response, biological factors, repair and recovery, fractionated doses and dose rate, early/acute effects of whole body exposure, late/chronic effects of whole body exposure, and radiation protection dose guidelines.

2. Intended Learning outcomes

Upon successful completion of this course the student should be able to:

A. Knowledge and understanding:

- A8. identify the various types and sources of ionizing radiation.
- A9. define radiation quantities and their units, as used in the assessment of radiation levels.
- A10. sketch the interactions of radiation particles with molecules in tissue.
- A11. identify the applications of radiation to the research laboratory and to medicine.

- A12. describe the radiobiological outcome, when presented with the conditions of irradiation(e.g. type, energy, dose, dose rate, oxygen level, drugs).
- A13. describe the biological impact of these events on living tissue at the molecular DNA, cellular, organ, and whole animal levels.
- A7. define radiation protection dose guidelines.

B. Intellectual skills:

They will also acquire the ability to

- B5. discuss the measures of radioactivity
- B6. distinguish between the different types of radiation.
- B7. illustrate the interaction of radiation and cells, tissues, organs.
- B8. predict the pathological effects of radiation.
- B9. determine the morphological and anatomical changes
- B10. estimate the radiation effects in developing embryo.
- B11. distinguish between the different types of radiation therapy

C. Professional and practical skills:

- C1. gain experience by pathological effects of radiation.
- C2. use basic laboratory equipment.
- C3. gain knowledge about the biological effects of radiation, free radicals and cancer.
- C4. use the scientific literatures and data bases effectively.

D. General and transferable skills

- D1.evaluate information from a variety of sources, library, computer assisted learning and handouts.
- D2.learn independently with open mindedness and critical enqurity.

3. Content:

Two hours weekly

Lecture 1

1 1 2	
Lecture 2	Classification of radiation effects

Historical overview

Lecture 3 Types of ionizing radiation

Lecture 4 Radiation parameters

Lecture 5 Measures of radioactivity

Lecture 6 Radiation units

Lecture 7	Radioactive Decay low
Lecture 8	Basic concepts in radiation genetics
Lecture 9	Radiation effects on DNA
Lecture 10	Some important relationships in radiation genetics
Lecture 11	Genetic effects and carcinogenesis
Lecture 12	Effect of ionizing radiation on water
Lecture 13	Interaction of radiation and matter
Lecture 14	Interaction of radiation and cells
Lecture 15	Radiation cellular biology
Lecture 16	Evaluating radiosensitivity
Lecture 17	Acute effects of whole body irradiation
Lecture 18	Whole-body effects of ionizing radiation
Lecture 19	Patient decontamination
Lecture 20	External decontamination
Lecture 21	Internal decontamination
Lecture 22	Risk models for cancer induction
Lecture 23	Radiation and pregnancy
Lecture 24	Radiosensitivity during pregnancy (Spectrum of effects)
Lecture 25	Radiation effects in developing embryo
Lecture 26	Radiation carcinogenesis
Lecture 27	Radiation protection
Lecture 28	Revision
Assessment	
Practical part	Has the same topics shown above

4. Teaching and Learning Methods

- Lectures: including visual presentation using PowerPoint presentation, blackboard and chalk and seminars.
- Practical classes including laboratories, microscopic slides, photomicrographs and instruments.
- Internet and library research
- Writing Reports
- Assessments

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	ки, і	3 Hour Examination	The 16 th Week	60%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Practical Examination	Р	2 Hour Examination	The 15 th Week	30%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Recommended Books:

- Radiobiology for the Radiologist EJ Hall, AJ Giaccia 2006 books.google.com
- Radiation Biology. A Hollaender Soil Science, 1956 soilsci.com,

Web sites:

http://www.uams.edu/chrp/radiationtherapy/coursedescriptions

http://bellevuecollege.edu

http://www.stvincent.org/education/radiography/descriptions.htm

http://www.uic.edu/com/uhrd/manual/Contents

http://radonc.yale.edu/training/radiobiology

7. Facilities required for teaching and learning

- Projectors; Video, Overhead and Slide.

- Computer Presentations and Writing Boards.
- Museum Models and Library.

	Course Coordinator	Head of Department						
Name	Asst. Prof. Ehab M. Tousson	Prof. Nabil El-Fiky						
Name (Arabic)	(أ. د. إيهاب مصطفى طوسون)	أ.د .نبيل الفقي						
Signature								
Date	2014-2015	2014-2015						

Contents		Academic standards intended learning outcomes ILOs																		
				KU							I					J	P		7	Γ
	A 1	A 2	A 3	A 4	A 5	A	A 7	B	B 2	B 3	B 4	B 5	B 6	B 7	C	C 2	C 3	C 4	D	D
Historical overview	1	2	3	4	3	6	/	1	2	3	4	5	0	/	1	2	3	4	1	2
Classifica tion of radiation effects	٧								٧											
Types of ionizing radiation	٧																			
Radiation paramet ers	٧							٧												
Measure s of radioact ivity		٧						٧												
Radiatio n units		٧						٧												
Radioact ive Decay Iow		٧																		
Basic concepts in radiation genetics			٧																	
Radiation effects on DNA			٧							V										
Some importan t relations hips in radiation			٧							V										

genetics										1				
geneucs														
Genetic effects and carcinoge nesis		٧						√						
Effect of ionizing radiatio n on water			√											
Interacti on of radiatio n and matter			٧	٧	٧	٧								
Interacti on of radiatio n and cells			>	٧	٧	٧								
Radiation cellular biology			٧	٧	٧	٧								
Evaluatin g radiosens itivity			٧	٧	٧	٧								
Acute effects of whole body irradiatio n			٧	٧	٧	٧								
Whole- body effects of ionizing radiation			٧	٧	٧	٧								
Patient deconta			٧	٧	٧	٧			√					

mination																	
External deconta mination		٧	٧	٧	٧				√								
Internal deconta mination		٧	٧	٧	٧												
Risk models for cancer induction		٧	٧	٧	٧		V	V									
Radiation and pregnanc y		٧	٧	٧	٧												
Radiosen sitivity during pregnanc y (Spectru m of effects)		٧	٧	٧	٧					V							
Radiation effects in developi ng embryo		٧	٧	٧	٧					V							
Radiation carcinoge nesis		٧	٧	٧	٧												
Radiation protectio n Revision		٧	٧	٧	٧						√						
Practical part												٧	٧	٧	٧	٧	٧

Course Title	Genetics								
Course Code	1613								
Academic Year	2014-2015								
Coordinator	Prof. Ahmed A. Massoud								
Other Staff	Prof. Ismail M. Al-Sharkawi								
Level	Master's Degree								
Semester	Continuous academic year								
Pre-Requisite									
Course Delivery	Lecture	28 2h lectures							
	Practical	28 2h practicals							
Parent	Zoology Departmen	nt							
Department									
Date of	September, 2014								
Approval									

This course is of two parts. The first part is the molecular bases of inheritance. The second part describes the different principles and methods underpinning recombinant DNA technology and its application for human welfare.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module, students should acquire knowledge and an understanding of:

- A1. show the fundamental concepts of genetics, the biochemistry of genes and how genes act in normal conditions.
- A2. describe the interference of external factors with the genetic regular transfer within generations.
- A3. explain the principles of DNA technology.
- A4. identify gene cloning and genetic engineering of animals and plants.

B. Intellectual skills:

They will also acquire the ability to:

- B1. discuss the basis of linking molecular to earlier (non-molecular) genetics.
- B2. discuss how the structures of DNA and RNA differ, prokaryotic DNA duplication and the structure of eukaryotic chromosomes and repetitive DNA.
- B3. choose the tools of genetic engineering in transgenesis.
- B4. explain recombinant DNA technology for the warfare of human and to manipulate challenging health, economic and environmental issues.

C. Professional and practical skills:

- C1. read the genetic code and translate a nucleic acid sequence to an amino acid sequence.
- C2. determine how traits are transmitted from one generation to the next.
- C3. apply common techniques e.g. polymerase chain reaction in relevant research areas.

D. General and transferable skills:

D1. use of information technology in self-learning.

3. Contents

Part - 1	Molecular bases of inheritance (An hour/week)
Lecture 1	The normal meiosis and mitosis; the effect of different alterations on these mechanisms.
Lecture 2	The interaction of the natural selection with the human gene pool; why certain abnormal disease-producing genes have been retained in the human gene pool.
Lecture 3	Differences between hereditary and teratogenic mechanism.
Lecture 4	How the major autosomal and sex chromosome trisomies arise and the possible effects of these abnormalities on the structure and function of the affected individual.
Lecture 5	The major theoretic ways that teratogens might act on developing tissue and congenital diseases with known etiology in relation to these possibilities.
Lecture 6	Gene structure and function.
Lecture 7	The arrangement of genes on chromosomes.
Lecture 8	DNA replication.
Lecture 9	Control of cell proliferation.

Lecture 10	Viral origins of cancer.
Lecture 11	Tools of genetic engineering of cells.
Lecture 12	Methods of biotechnology.
Lecture 13	Methods of preparing genetically engineered organisms.
Lecture 14	Some applications of biotechnology.
Part - 2	Recombinant DNA technology (An hour/week)
Lectures 1, 2	Introduction: Genes: Nature, concept and synthesis
Lectures 3, 4	Gene organization, gene regulation, transcription
Lectures 5, 6	Tools of recombinant DNA technology: 1.Basic requirements
Lectures 7, 8	2. Cutting and joining of DNA.
Lectures 9, 10	3. Cloning vectors
Lectures 11, 12	Techniques of genetic engineering
Lectures 13, 14	1. Cloning Methods
Lectures 15, 16	2. DNA analysis
Lectures 17, 18	Genetic engineering for human welfare
Lectures 19, 20	Genomics
Lectures 21, 22	Proteomics
Lectures 23, 24	Bioinformatics
Lectures 25, 26	Manipulation of reproduction and transgenic animals
Lectures 27, 28	Biotechnology in agriculture
Weeks 30, 31	Assessment
Practical part	Has the same topics showed above

4. Teaching and Learning Methods

- Lectures.

5- student assessments

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes: Handouts.

Essential Books:

- . (For Part 1 of the course).
- Murray, R. K.; Granner, D. K.; Mayes, P. A.; Rodwell, V. W. (2006). Harper's Illustrated Biochemistry Sourse: 7th Ed . McGraw-Hill. (**For Part 2 of the course**).

Recommended Books:

Web sites:

- Projectors: video and overhead.
- Computer presentations and writing Boards
- Spectrophotometer, pH meter, analytical balance; waterbaths.
- Traditional laboratory glassware and plasticware.
- Live animal specimens.

Library.	Course Coordinator	Head of Department
Name	Prof. Ahmad Masaaod	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. أحمد مسعود	أ. د.نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs											
		KU I P						T				
	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	D 1
Molecular bases												
of inheritance												
The normal	٧											
meiosis and												
mitosis												
The interaction of										٧		
the natural												
selection with the												
human gene pool												
Differences	٧								٧	٧		
between												
hereditary and												
teratogenic												
mechanism.												
How the major		٧							٧	٧		
autosomal and												
sex chromosome												
trisomies arise												
The major	٧								٧	٧		
theoretic ways												
that teratogens												
might act on												
developing tissue												
Gene structure	٧											
and function.												
The arrangement	٧											
of genes on												
chromosomes.												
DNA replication.	٧		٧									
Control of cell		٧										

proliferation.									
Viral origins of cancer.		٧							
Tools of genetic engineering of cells.									
Methods of biotechnology.	٧		٧						
Methods of preparing genetically engineered organisms.	٧			٧					
Some applications of biotechnology.	٧		٧						
Recombinant DNA technology (An hour/week)	٧		٧						
Introduction	٧								
Gene	٧								
Tools of recombinant DNA	٧		٧				٧		
Cutting and joining of DNA.	٧						٧		
Cloning vectors	٧						٧		
Techniques of genetic engineering	٧		٧	٧			٧		
1. Cloning Methods	٧			٧			٧		
2. DNA analysis	٧				1				
Genetic engineering for	٧			٧					

human welfare										
Genomics	٧									
Proteomics	٧									
Bioinformatics	٧			V						٧
Manipulation of reproduction and transgenic animals	٧									
Biotechnology in agriculture		٧	٧							
Assessment										
Practical part						٧	٧	٧	٧	٧

Course Title	Experimental Embryo	logy					
Course Code	1614						
Academic Year	2014-2015						
Coordinator	Prof. Foad Afifi Aboza	Prof. Foad Afifi Abozaid					
Other Staff	Prof. Nabil Elfiki	Prof. Nabil Elfiki					
Level	Master's Degree (Experimental Zoology)						
Semester	Continuous academic	year					
Pre-Requisite							
Course Delivery	Lecture	28 2h lectures					
	Practical	28 2h practicals					
Parent	Zoology Department						
Department							
Date of	September, 2014						
Approval							

This course provides students with the principles of embryology with emphasis on current experimental approaches utilized in research of normal and abnormal development of the mammalian embryo.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module, students should acquire knowledge and an understanding of:

- A1. describe the processes of early embryonic development.
- A2. show current methodologies for conducting research in the field of embryology.

B. Intellectual skills:

They will also acquire the ability to:

B1. predict new solutions to scientific related problems.

C. Professional and practical skills:

C1. carry out exercises and demonstrations to emphasize topics covered.

C2. gain experience with embryos and techniques used to study them.

D. General and transferable skills:

D1.use of information technology in reviewing recent literature and in self-learning.

3. Contents

Lecture 1,2	Molecular Biology Review; Cell Cycle.
Lecture 3.4	Cell Cycle Paper Discussion; Sterile Technique and Intro to Moving Eggs/Embryos.
Lecture 5.6	In Vivo Oocyte Maturation and Fertilization; In Vitro Maturation and Fertilization (IVM/IVF).
Lecture 7,8	In Vitro Maturation/Fertilization Paper Discussion; Oocyte Collection and In Vitro Maturation.
Lecture 9,10	In Vitro Culture of Embryos; IVP Paper Discussion.
Lecture 11,12	Preimplantation Development; In Vitro Fertilization, Embryo culture, Grading and Freezing.
Lecture 13,14	Artificial Reproductive Technologies; ART Paper Discussion.
Lecture 15,16	Maternal Zygotic Transition; Embryo RNA Isolation and Reverse Transcription.
Lecture 17,18	Epigenetics and Imprinting.
Lecture 19,20	Epigenetics and Imprinting; Epigenetics Paper Discussion.
Lecture 21,23	Gene detection by PCR; Sex Determination.
Lecture 24,25	Germ Cells and Gametogenesis; Gel Electrophoresis of PCR products/introduction to cloning DNA.
Lecture 26,27	Transgenesis; Pronuclear Microinjection.
Lecture 28	Nuclear Transfer.

4. Teaching and Learning Methods

- Lectures.

Practical

- Practical classes.

Has the same topics shown above

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

Essential Books:

- Developmental Biology. Scott F. Gilbert. Sixth Edition.
- The Developing Human: Clinically Oriented Embryology. Keith L. Moore. Fourth Edition.
- Handbook of In Vitro Fertilization. Alan O. Trounson and David K. Gardner. Second Edition.
- Clinical Embryology: A Color Atlas and Text. Murray Brookes and Anthony Zietman.
- An Atlas of Preimplantation Genetic Diagnosis. Yury Verlinsky and Anver Kuliev.

- Projectors: video and overhead.
- Analytical balance; waterbaths; incubators.
- Traditional laboratory glassware and plasticware.
- Animal specimens; representative slides.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Fouad Abozaid	Prof. Nabil Kamal Elfiky
Name (Arabic)	أ. د. فؤاد أبو زيد	أ. د. نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

	Ir	ntende		ning o	utcom	ies	
Course title	KU		I	P		T	
	A1	A2	B 1	C 1	C2	D1	
Molecular Biology Review; Cell Cycle.	٧						
Cell Cycle Paper Discussion; Sterile Technique and Intro to Moving Eggs/Embryos.	٧						
In Vivo Oocyte Maturation and Fertilization; In Vitro Maturation and Fertilization (IVM/IVF).	٧						
In Vitro Maturation/Fertilization Paper Discussion; Oocyte Collection and In Vitro Maturation.	٧						
In Vitro Culture of Embryos; IVP Paper Discussion.	٧		٧				
Preimplantation Development; In Vitro Fertilization, Embryo culture, Grading and Freezing.	٧						
Artificial Reproductive Technologies; ART Paper Discussion.	٧						
Maternal Zygotic Transition; Embryo RNA Isolation and Reverse Transcription.	٧						
Epigenetics and Imprinting.	٧						
Epigenetics and Imprinting; Epigenetics Paper Discussion.		٧					
Gene detection by PCR; Sex Determination.		٧					
Germ Cells and Gametogenesis; Gel Electrophoresis of PCR products/introduction to cloning DNA.		٧					
Transgenesis; Pronuclear Microinjection.		٧					
Nuclear Transfer.		٧					
Practical part				٧	٧	٧	

Course Title	Immunology						
Course Code	1615						
Academic Year	2014-2015	2014-2015					
Coordinator	Prof. Ibrahem B. Hela	Prof. Ibrahem B. Helal					
Other Staff	Prof. Ismail M. Al-Sha	rkawi;					
Level	Master's Degree (Experimental Zoology)						
Semester	Continuous academic	year					
Pre-Requisite							
Course Delivery	Lecture	28 2h lectures					
	Practical	28 2h practicals					
Parent	Zoology Department	-					
Department							
Date of	September 2014						
Approval							

This course will provide an overview or introduction to the immune system, and the cells and molecules involved in immunity. Emphasis will be placed on describing the molecular genetic processes involved in the immune system and how these events relate to the production of an effective immune system.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module, students should acquire knowledge and an understanding of:

- A1. identify the main cell types in the mammalian immune system.
- A2. describe the structure of lymphoid organs and how this changes in infection.
- A3. show the enzymatic nature of the of the complement cascadde.
- A4. describe the nature of interaction detwen antigens and antibody.

B. Intellectual skills:

They will also acquire the ability to:

- B1. discuss how cells and molecules of the immune system interact.
- B2. predict the importance of the subject of immunology in many areas of biology and medicine
- B3. discuss how the MHC system controls immune recognition.
- B4. discuss how chemical mediators orchestrate the inflammatory response.

C. Professional and practical skills:

C1. tackle the major techniques of interaction of antibody with antigen and applications in laboratory investigations.

D. General and transferable skills:

D1. use of information technology in self-learning.

3. Contents

Part – 1 (Two hours/week)

Lectures 1 - 2 An Introduction to Immunology

Components of the immune system, the importance of non-self discrimination and specific recognition of antigens.

Lectures 3 - 4 Antibody Structure

Structure and function of the antibody classes. Antibody production and clonal selection. Introduction to antibody gene rearrangement

Lectures 5 - 6 Antibody Gene Rearrangements I

Genetic mechanisms of antibody gene rearrangement.

Lectures 7 - 8 Antibody Gene Rearrangements II

Increasing antibody binding by somatic hyper-mutation and changing antibody class.

Lectures 9 - 10 Introduction to MHC Class I and II Molecules

Structure of the MHC Class I and Class II molecules, genetics and disease association.

Lectures 11 - 12 Recognition of MHC Plus Peptide by T Cells

T cell recognition of antigen and MHC genetic variation of the immune response.

Lectures 13 - 14 Examination

Mechanism of T cell gene rearrangement and the recombinase genes.

Lectures 17 - 18 8 Immunological Tolerance

Positive and negative selection. The use of transgenic animals as models of B and T cell tolerance.

Lectures 19 - 20 Molecular Immunology and Disease

Mechanisms of immunologically mediated disease and disease models.

Lectures 21 - 22 Immunity and parsitic diseases - 1

Lectures 23 - 24 Immunity and parsitic diseases - 2

Lectures 25 - 26 Genetic Engineering of Antibodies and their use in Therapy

Production of recombinant antibodies *in vitro* and their application in the treatment of human disease.

Lectures 27 - 28 Molecular Techniques and Improved Immunotherapy

Discussion of the ways in which molecular techniques can and are being used to boost the immune response to tumors and infectious disease

Weeks 30, 31 Assessment

Practical part Correspond to the above topics

4. Teaching and Learning Methods

- Lectures.
- Practical classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:- Handouts.

Essential Books:

- Janeway, C. A. and Travers, P. (1996). Immunobiology: The immune system in health and disese: 2nd Ed . Current biology Ltd. London, San Francisco and Philadelphia.

Web sites:

- Video projectors and writing Boards.
- Kits based on immunological tests.
- Spectrophotometer, pH meter, analytical balance; waterbaths.
- Traditional laboratory glassware and plasticware.
- Live animal specimens.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Ibrahim B. Helal	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. إبراهيم بكر هلال	أ. د.نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs									
		KU I						P	T	
	A1	A2	A3	A4	B1	B2	В3	B4	C1	D1
An Introduction to	٧									
Immunology										
Antibody Structure				٧						
Antibody Gene				٧						٧
Rearrangements I										
Antibody Gene				٧						
Rearrangements II										
Introduction to MHC Class I							٧			
and II Molecules										
Recognition of MHC Plus							٧			
Peptide by T Cells										
Examination										
T Cell Gene Rearrangements		٧								
8 Immunological Tolerance		٧			V	1		٧		
Molecular Immunology and Disease		٧			٧	٧		٧		
Immunity and parsitic diseases - 1		٧								
Immunity and parsitic		٧								
diseases - 2										
Genetic Engineering of			٧							
Antibodies and their use in										
Therapy										
Molecular Techniques and									٧	
Improved Immunotherapy										
Practical part									٧	٧

Course Title	Biostatistics					
Course Code	1618					
Academic Year	2014/2015					
Coordinator	Prof. Abd-Elmoneim Anwar Mohamed					
Other staff						
Level	Preparatory level for MSC					
Semester	Continuous academic year					
Pre-Requisite						
Course delivery	Lecture	28 x 1h lectures				
	Practical	-				
Parent	Mathematics Department					
Department						
Date of approval	September, 2014					

This module aims to provide M. Sc. students in biology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific biological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of this course the students should be able to:

- A13. raise students' consciousness concerning basic statistical issues such as statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A14. understand the basic principles of study design.
- A15. describe the types of variables that are used in biological research.
- A16. appreciate the role of sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B9. carry out confidently simple essential statistical methods in biological research and to interpret results.
- B10. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B11. summarise data using graphical and tabular data.
- B12. interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C7. select and apply appropriate basic statistical methods for analysis of data.
- C8. use GraphPad package in data analysis.
- C9. tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D10. write report including graphical material.
- D11. present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D12. use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

- Lectures 1 Introduction: Variables and distributions.
- Lectures 2-3 Summarizing data.
- Lectures 4-5 Sampling variability of a mean.
- Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two
 - samples.
- Lectures 8-9 ANOVA: Comparing more than two samples.
- Lecture 10 Examination.
- Lectures 11-12 Sampling variability of proportions.
- Lectures 13-14 Analysis of categorical data; comparing two proportions
- Lectures 15-16 Regression and correlation.

Weeks 31, 32	Assessment
Lectures 29-30	Revision
Lectures 27-28	Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.
Lectures 25-26	Comparing variances: Computer applications.
Lectures 23-24	Comparing means: Computer applications.
Lectures 21-22	Comparing distribution: Computer applications.
Lectures 19-20	Regression and correlation: Computer applications.
Lectures 17-18	Comparing correlations and regression. Multiple regressions.

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length Schedule		Proportion
Written Examination	ки, і	3 Hour Examination	The 16 th Week	90%
Oral Assessment	ки, і	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill.

Recommended books

- Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
- Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
	Prof. Abd-Elmoneim A. Mohamed	Prof. Mohamed A. Beltagy
Name (Arabic)	أ. د. عبد المنعم محمد طعيمه	أ. د. محمد بلتاجي غباشي
Signature		
Date	/9/2014	/9/2014

Course	Intended learning outcomes ILOs													
title		K	U]	[P				T	
	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introduction.	٧	٧	٧	٧										
Summarizing data.	٧	٧	٧	٧										
Sampling variability of a mean.	٧	٧	٧	٧										
Analysis of quantitative data	٧	٧	٧	٧										
ANOVA	٧	٧	٧	٧	$\sqrt{}$	$\sqrt{}$	V	٧						
Examination.	٧	٧	٧	٧										
Sampling variability of proportions.	٧	٧	٧	٧										
Analysis of categorical data	٧	٧	٧	٧		٧								
Regression and correlation.	٧	٧	٧	٧										
Comparing correlations.	٧	٧	٧	٧										
Regression and correlation	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing distribution	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing means	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing variances	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧

Course Title	Computer							
Course Code	1617							
Academic Year	2014/2015							
Coordinator	Prof. Mohamed	Prof. Mohamed El-Awady						
Other Staff	Prof. Mahmoud	Prof. Mahmoud Kamel, Prof. Ahmed El-Shishtawy, Prof.						
	Qadry Zakaria							
Semester	Continuous academic year							
Pre-Requisite								
Course Delivery	Lecture	16 x 1h lectures						
	Practical	16 x 1h practicals						
Parent	Computer Cen	tre						
Department								
Date of Approval	September, 20	014						

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- Underpin academic work throughout postgraduate studies.
- Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

Upon successful completion of this course the students should be able to:

- A1. Demonstrate knowledge and understanding of the use of IT in the context of their postgraduate studies.
- A2. Know the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A3. Carry out necessary graphical, statistical and frequency analyses of different types of data.
- A4. Create powerful presentation using sophisticated software packages.
- A5. Make use of different internet resources.
- A6. Solve scientific problems using computer programming.

A7. Make use of different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B2.Integrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

D2. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential- logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video, etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lecture 8-9 Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Lecture 10-11 Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports to extract useful information

Lecture 12-13 Computer programming language

Assignment 6: Programming using Visual Basic 6

Solving real problems using a computer language

Lecture 14-15 Photo manipulation and enhancement using the photoshop

Assignment 7: Using the Photoshop program

Practicing on manipulation and enhancing of images

Lectures 16 Introduction to Data frequency analysis using Fourier analysis

and Fourier transformation searching for periodicities

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Co	urse Coordinator	Head of Department				
Name	Prof. Mohamed M. El-Awady	Prof. Elsayed Taha Rezk				
Name (Arabic)	أ.د.محمد العوضي	أ.د. السيد طه رزق				
Signature						
Date	/9/2014	/9/2014				

Course title	Intended learning outcomes ILOs									
		KU					I	P	T	
	A1	A2	A3	A4	A5	A6	A7	B1	C1	D1
Methods for graphical representations, Data analysis and Data modeling										
Assignment 1 : Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Statistical Data analysis	٧	٧	٧	٧	٧	٧	٧	٧		
Assignment 2 : Using Application programs	٧	٧	٧	٧	٧	٧	٧	٧		
Creating powerful presentation	٧	٧	٧	٧	٧	٧	٧			
Assignment 3 : Using PowerPoint program	٧	٧	٧	٧	٧	٧	٧		٧	
Use of internet capabilities and searching engines	٧	٧	٧	٧	٧	٧	٧			٧
Assignment 4: Using the Internet	٧	٧	٧	٧	٧	٧	٧			٧
Creating Data Base and related Queries and Reports	٧	٧	٧	٧	٧	٧	٧			
Assignment 5: Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Computer programming language	٧	٧	٧	٧	٧	٧	٧			
Assignment 6: Programming using Visual Basic 6	٧	٧	٧	٧	٧	٧	٧			
Photo manipulation and enhancement using the photoshop	٧	٧	٧	٧	٧	٧	٧			
Assignment 7: Using the Photoshop program	٧	٧	٧	٧	٧	٧	٧			

M.Sc. Programme of Comparative Anatomy of Invertebrates

Academic Reference Standards for M.Sc. degree in Comparative Anatomy of Invertebrates

1. Academic Standards:

The Academic Reference Standards (ARS) for the award of the M.Sc. degree in Comparative Anatomy of Invertebrates are designed to provide students with the knowledge and skills for proficiency in Zoological Science. The National Authority for Quality Assurance and Accreditation of Education (NAQAAE) for M.Sc. degree is used as the core of this academic standards to determine appropriate content and process skills for students. The relationship between science, our environment, and our everyday world is crucial to each student's success and should be emphasized. Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content.

The following Specific ARS for the M.Sc. in Zoology were approved by the Council of the Faculty of Science, Tanta University.

1.1. Graduate Attributes:

Graduate of M.Sc. Program in Comparative Anatomy of Invertebrates Should be

- 1.1.1-Apply the knowledge of Zoological Science and their related disciplines, applications and tools in solving scientific problems.
- 1.1.2-Apply the analytical methods in Zoology research.
- 1.1.3-Apply specialized knowledge in Zoology combined with related knowledge in professional practice.
- 1.1.4- Show awareness of the ongoing problems in the minor specialization.
- 1.1.5- Use appropriate technological resources to serve and improve the professional practice.
- 1.1.6- Communicate effectively and lead teams.
- 1.1.7- Show awareness of his/her role in community development and preservation of the environment in light of global and local changes.
- 1.1.8- Share in multidisciplinary team work and be flexible for adaptation and working under contradictory conditions.
- 1.1.9- Hold professional values that maintain individuality, positive thinking and self-confidence.
- 1.1.10- Collect, summarize and present data, undertake professional and ethical responsibilities.

1.2. Knowledge and Understanding:

Students analyze how scientific knowledge is developed and will understand important features of the process of scientific inquiry. By the end of the program, the M.Sc. holder

must have precise knowledge in different areas and research fields in zoology and be able to:

- 1.2.1- Investigate the advanced knowledge and training in one or more areas of Zoology with more specific subject-related skills in one of these areas.
- 1.2.2- Explain the theoretical and practical knowledge of various Zoological aspects, their knowledge which are required for professional activities in the field of Zoology research career.
- **1.2.3-** Demonstrate a comprehensive understanding of essential literature in their specific research area.
- 1.2.4- Define the scientific progress in the area of his/her minor specialty.
- 1.2.5-Write on the routine applied for interpreting and analyzing Zoological information.
- 1.2. 6- Illustrate the principles of ethics in scientific studies and research.

1.3. Intellectual Skills

Students will apply the following to inquiry intellectual practices:

- 1.3.1- Criticize approach to any Zoological and environmental problems which they may encounter.
- 1.3.2- Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.3.3-Perform perfectly the modern professional practice in the minor specialty of Zoology.
- 1.3.4- Apply a significant information gathering and analytical skills in an area of applied research in Zoology.
- 1.3.5- Develop lines of argument and appropriate judgments in accordance with the scientific theories and concepts.
- 1.3.6- Create plan to develop performance in the minor area of specialty.
- 1.3.7- Apply appropriate physical principles to create and analyze system components
- 1.3.8- Evaluate the risks in professional practices in the minor area of specialty.
- 1.3.9-Analyze and estimate knowledge in the area of minor specialty and use it in solving research problem.
- 1.3.10- Reconstruct the available resources effectively and develop them.
- 1.3.11- Differentiate between subject-related theories and assess their concepts and principles.
- 1.3.12- Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.3.13- Construct several related integrated information to confirm, make evidence and test hypothesis.
- 1.3.14- Use theories of zoology to interpret results.

1.4. Professional and practical skills:

Students will be encountered important features of the process of scientific inquiry and by the end of the program, the M.Sc. holder must be able to:

1.4.1- Perform the skills of analytical biological information in selecting the appropriate biological instrumentations and laboratory techniques in various fields of Zoology.

- 1.4.2- Plane, design, conduct and report on the investigated data, using appropriate techniques and considering scientific guidance.
- 1.4.3- Store sufficient idea for methods of collection, classification, preservation and analysis of animal samples.
- 1.4.4- Apply techniques and tools considering scientific ethics.
- 1.4.5- Perform research in Zoological sciences and demonstrate proficiency in the techniques and methods appropriate for their research area in minor specialty.
- 1.4.6-Design and conduct a research project and be able to present the results to an appropriate forum both in oral and in written format.
- 1.4.7- Proficiently teach the laboratory sections in Zoology as well as one specialty area and able to compete positively for jobs in academic and private area.
- 1.4.8- Collect evidences to test and confirm the scientific hypothesis in the field of minor specialty.
- 1.4.9- Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 1.4.10- Use the national standards for laboratory equipment which are essential for practical work.

1.5. General and Transferable Skills.

By the end of the program, the M.Sc. holder must be able to:

- 1.5.1- Oral and written communicate and exchange the information effectively through seminars and discussion meetings.
- 1.5.2- Effectively use information and communication technology and identify roles and responsibilities, and their performing manner.
- 1.5.3- Think independently, set tasks and solve problems on scientific basis.
- 1.5.4- Work in group effectively, manage time and communicate with others positively.
- 1.5.1- Consider community linked problems, ethics and traditions and acquire self- and long life—learning.
- 1.5.5- Deal with scientific data in Arabic, English or other languages.
- 1.5.6- Apply effectively scientific models, systems, , information technology, and tools and deal with scientific patents, also, exhibit the sense of beauty and neatness.
- 1.5.7- Fit the ethics of scientific research.

2- Curriculum Structure and Contents:

- 7.1- Program duration: At least two years for the thesis preparation.
- 7.2- Program Structure: Thesis in different branches of zoology.

Thesis

The thesis of M.Sc. program in Zoology is a formal written document representing sustained research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods courses will help the student to focus his or her research effort, and provide general guidelines for research

approach and report preparation. Thesis will be reviewed and approved by the candidate's supervising professor and external academic review committee.

a. The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions
- References

b. Language of the thesis:

The thesis must be written in English language accompanied by a summary in Arabic.

c. Formation of Examiners Committees

A committee is selected by zoology Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

4. Program Admission Requirements:

An applicant for admission to the M.Sc. program in zoology should hold an B.Sc. degree in zoology with a minimum grade of (Good = 70%)

4- Program Student Evaluation

- Courses of pre-master academic year
- At least one published paper
- Written thesis
- Public hearing
- Defense exam

A. Program Specification

Program Title	MSc-Comparative Anatomy of Invertebrates
Award	Master of Comparative Anatomy of Invertebrates
Parent Department	Zoology Department
Teaching Institution	Faculty of Science – TU
Awarding Institution	Tanta University
Coordinator	Prof. Mohamad Mona
External Evaluator(s)	applied
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Other Reference Points	Bioscience, Egyptian Code of Assessment
Date of intake	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

- To develop the knowledge of the major taxonomic features that is used to identify each group including down to the class level of the main invertebrate phyla.
- To develop a critical analysis on the phylogenetic relationship among major invertebrate groups incorporating both traditional morphologically based hypothesis as well as recent molecular hypothesis.
- To provide the major principles of development and comparative patterns of invertebrate embryology.
- To transfer skills in verbal communication, presentation and interpretation, group membership and leadership.
- To provide arrange of practical skills, ecological and systematic methods, research techniques and advanced knowledge appropriate to employment in a wide range of contexts (such as environmental sector, ..ect.).
- To provide the students with a concept of study design and data analysis suitable for laboratory and field research.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire the ability to:

- A17. Explain evolutionary relationships among different taxa and describe basic morphological, physiological, ecological and behavioural characteristics of invertebrate animals to provide a foundation for further studies in biology.
- A18. Describe the anatomical basis for nutrition, osmoregulation, excretion, digestion, reproduction, development, locomotion and sensory interactions with the environment in a phylogenetic context. .
- A19. Describe basic methodologies for identification and classification of invertebrate animals.
- **A20.** Describe the process of gamete production, fertilization and the development in invertebrate groups.

B. Intellectual skills:

They will also acquire the ability to:

- B26. Formulate a hypothesis, plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.
- B27. Discuss aspects of a chosen topic in depth manner.
- B28. Plan and write original essay evaluating published research articles and addressing issues of importance selected from various topics covered by the degree.
- B29. Analyse, synthesise and assimilate diverse information in a critical manner.
- B30. Construct reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.
- B31. Integrate theory and practice.

C. Professional and practical skills:

- C20. Identify and describe the differences between individual within different
- C21. Dissect invertebrate animal to describe the differences in anatomical structure, collect and preserve mature gametes.
- C22. Write a scientific report concerning the variations among examined invertebrates.

C23. Operate statistical estimations such as correlation and testing hypothesis.

D. General and transferable skills:

- D30. Communicate about a subject clearly, confidently and effectively using a range of presentational techniques.
- D31. Apply numerical and IT skills with confidence and accuracy.
- D32. Take responsibility for self-managed learning and personal/professional development.
- D33. The capacity to work with a strong sense of direction and creativity.
- D34. communicate effectively and professionally by written and graphical form.
- D35. Collect, record, analyze and interpret data from a range of sources.

3. Academic standards

3.A External references for standards (Benchmarks):

academic reference standards(ARS)

4. Curriculum Structure and contents:

4.A	Programme duration: one year	ogramme duration: one year									
4.B	Programme structure										
4.B.1	Number of contact hours	per Week:									
		Lectures	6	Lab.	6						
	Overall Contact hours	Lectures	10	Lab.	9						
4.B.2	Number of contact hours	Compulsory	6	Optional	6						
4.B.3	Thesis		<u></u>								

5. Programme courses

Yea 1	Course Title	Lec.	Prac.	Program ILOs Covered
	ee of the first five courses are igatory:			
1	Histology	2	2	KU, I, P,T
2	Comparative Anatomy of Invertebrates	2	2	KU, I, P,T
3	Invertebrate Embryology	2	2	KU, I, P,T
4	Invertebrate Phylogeny	2	2	KU, I, P,T
5	Biostatistics	1	-	KU, I,P, T
6	Computer	1	1	KU, I,P, T

6. Programme admission requirements

Arrangements for admission are based on the national guidelines with no Faculty control on the number of newly enrolled students.

Candidates must satisfy the general admission requirements of the University, Faculty in Biology and also hold one of the following:

The applicants must have obtained a Bachelor's degree, or its equivalent, in Zoology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	applied	
5. student questionnaire	applied	A questionnaire applied on courses individually

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place

Name	Signature	Date
Programme Coordinator: Prof. Mohamad H. Mona (أ. د. محمد حسن منا)		/9/2014
Head of Quality Assurance Unit: Prof. Hoda Kamal Elsayed (أ. د. هدى كمال السيد)		/9/2014
Dean of the Faculty: Prof. Tarek Fayed (أ. د. طارق فايد)		/9/2014

M.Sc. Courses: Programme Matrix
Programme Title: Master of Science (M.Sc.) degree in Physiology

Programm	Ugia							emic												
intended learning			K	U						I				I				T		
outcomes	A	Α	Α	A	Α	Α	В	В	В	В	В	В	В	С	C	D	D	D	D	D
ILOs	1	2	3	4	5	6	1	2	3	4	5	6	7	1	2	1	2	3	4	5
A1. Ex	V																			
plain	•																			
evolutio																				
nary																				
relations																				
hips																				
A2. De																				
scribe																				
the																				
anatomi																				
cal basis																				
for																				
nutrition																				
A3. De																				
scribe																				
basic																				
methodo																				
logies																				
A4. De																				
scribe																				
the																				
process																				
of																				
gamete																				
producti																				
on .																				
B1. For									1											
mulate a																				
hypothe																				
sis.																				
B2. Dis																				
cuss																				
aspects																				
of a																				
chosen																				
topic in																				
- depth																				
manner.																				
B3. Pla								٧												
n and																				
write																				
original																				
essay																				
evaluati																				

ng													
publishe													
d													
B4. An				٧									
alyse,				•									
synthesi													
se and													
assimilat													
e diverse													
informat													
ion in a													
critical													
manner.													
B5. Co													
nstruct													
reasone													
d													
argumen													
ts to													
support													
а													
position													
on the													
ethical													
B6. Int													
egrate													
theory													
and													
practice													
								-/					
								٧					
ntify and													
describe													
the													
differenc													
es													
between													
individu													
al within													
different													
taxa.													
C2. Dis									٧	٧			
sect										•			
inverteb													
rate													
animal													
to													
describe													
the													
differenc													
es in													
anatomi													
cal													
structur													
Juliaciai		l	L	L	L	 L							

_	ı —	ı —	1	1	1	1	1	ı —							
e.															
C3. Wr															
ite a															
scientific															
report .															
concerni															
ng the															
variation															
s among															
examine															
d															
inverteb															
rates.															
C4.															
Operate															
statistic															
al															
estimati															
ons such															
as															
correlati															
on and															
testing															
hypothe															
sis.															
D1. Co												٧			
mmunica															
te about															
a subject															
clearly															
D2. Ap													٧		
ply															
numeric															
al and IT															
skills															
with															
confiden															
ce and															
accuracy															
D3. Tak															
е															
responsi															
bility for															
self-															
managed															
learning															
D4. Th															
е															
capacity															
to work															
with a															
strong															

F-		 				 					
sense of											
direction											
and											
creativit											
у.											
D5. co										٧	
mmunica											
te											
effective											
ly and											
professi											
onally by											
written											
and											
graphica											
I form.											
D6. Col											
lect,											
record,											
analyze											
and											
interpret											
data											
from a											
range of											
sources.		l	l				l				

Course - Programme ILOs Matrix (Curriculum Map)

Course title									In	tende	d lear	rning	outco	omes	ILOs	,				
		K	U				I					P					T			
	A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	B 5	B 6	C 1	C 2	C 3	C 4	D 1	D 2	D 3	D 4	D 5	D 6
Comparati ve Anatomy of Invertebra tes		٧				٧	٧	٧	٧			٧	V		٧		٧			٧
Invertebrate Embryology				٧		٧	٧	٧	٧						٧		٧			٧
Invertebra te Phylogeny	٧		٧			٧	٧	٧	٧		٧		V		٧		٧			٧
Biostatistics					٧		٧	٧		٧				1	٧		٧		٧	٧
Computer										1			٧	٧	٧	٧	٧	٧	٧	٧
thesis					٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

B. Course Specification

Course Title	Histology	
Course Code		
Academic Year	2014/2015	
Coordinator	Prof. Ahlam A. Abou	Shafey
Other Staff		
Level	Graduate-MSc	
Semester	One acdemic year	
Pre-Requisite		
Course Delivery	Lecture	28 x 2h lectures
	Practical	28 x 2h practicals
Parent	Zoology Departmen	t
Department		
Date of	September, 2014	
Approval		

1. Aims

This module is in two halves:

- Provide students with adequate theoretical knowledge and professional skills in systemic animal tissues.
- Illustrate the advanced techniques in studying tissues.
- Create the ability to read and comment on electron microcopy observation.
- Acquire the ability to continuing research enhancement in the field of histology.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A1. Describe the normal histological features(lm) and ultra-structure(tem) of various body systems (digestive, endocrine respiratory, urinary, circulatory.
- A2. describe and distinguish structural features of histological organs, regions and cell types present in each system and relate the structural variations to differences in organ function.
- A3. explain the physiological, ultrastructural and specialized function of different cell types in different organ of the body

B. Intellectual skills:

They will also acquire the ability to

B1. Correlate between histological structure, ultra-structure and function of different tissues and organs of all studied mammalian systems.

C. Professional and practical skills:

- C1. analyse, summarise and integrate information critically from a variety of media.
- C2. recognize & distinguich between different organs in histological slides seen under the microscope.
- C3. correlate the organs in each system with their function.

D. General and transferable skills:

- D1.use the internet and other electronic sources as a source of information.
- D2.develop team work skills and conduct lab investigation in a safe and ethical manner.
- D3.communicate effectively with the colleagues as well as the employes and staff members.

3. Contents

Part - 2	Histology
Lectures 1,2	Circulatory system (blood vascular and lymphatic systems). Blood vascular system, histological structure of heart wall, and general structure of blood vessel wall.
Lectures 3,4	Arteries and veins; (large, medium-sized and small), blood capillaries, sinusoids and a-v anastomosis.
Lectures 5,6	Endocrine system, introduction, distribution of endocrine glands, 1) pituitary gland: a- adenohypophysis, histological structure and explain cell types of sth, lth, tsh, gth, acth and

	msh cells, sites and function.
Lectures 7,8	B- neurohypophysis of pituitary gland (pars nervosa), types of its nerve fibres and cells. 2) thyroid gland (lm&tem): follicular cells, parafollicular cells and interfollicular cells, and 3) parathyroid gland (chief and oxyphil cells), sites and functions.
Lectures 9,10	4) Adrenal glands (Im & tem):a- adrenal cortex (zona glomerulosa, zona fasciculata and zona reticularis). B- adrenal medulla (types of chromaffin cells:adrenaline and nor adrenaline cells.
Lectures 11,12	Integument; skin and appendages. Types, sites and structure of skin, hairs, hair follicles and nails.
Lectures 13,14	Color of skin, skin glands; sweat and sebaceous glands.
Lectures 15,16	Digestive system, oral cavity; lip, tongue, palate and pharynx.
Lectures 17,18	Alimentary tract; esophagus, stomach, small and large intestine.
Lectures 19,20	Digestive glands; salivary glands, liver and pancreas.
Lectures 21,22	Urinary system(Im & tem); kidney, nephron, collecting tubules, and blood-renal barrier.
Lectures 23,24	Juxta-glomerular apparatus, ureter, urinary bladders and urethra.
Lectures 25,26	Respiratory system:1)conducting portion: nasal cavity (naso-pharynx and larynx), trachea and respiratory epithelium.
Lectures 27,28	Lung, Im & tem (bronchi & terminal bronchiols), 2)respiratory portion (respiratory bronchioles, alveolar duct & sacs, alveoli, pneumocytes (type i & ii), alveolar macrophages and blood-air barrier.
Weeks 29,30	Assessment

4. Teaching and Learning Methods

- Lectures.

Weeks 31,32

- Practical Classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

*KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

 Course notes and Laboratory manual authorized by the Council of Department of Zoology.

Essential Books:

7. Facilities required for teaching and learning

- Projectors; Video and Overhead Projectors.
- Computer Presentations and Writing Boards.
- Microscopes; Compound and Stereoscopic.
- Museum Models.
- Scientific films and CDs.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Ahlam A. Abou Shafey	Prof. Nabil Kamal El Fiky
Name (Arabic)	أ. د. أحلام السيد أبو شافعى	أ. د. نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs									
	KU		I P			T				
	A1	A2	A3	B1	C1	C2	C3	D 1	D2	D3
Circulatory system	٧	٧	٧							
Arteries and veins	٧	٧	٧							
Endocrine system	٧	٧	٧							
B- neurohypophysis of	٧	٧	٧							
pituitary gland (pars nervosa)										
4) Adrenal glands (Im & tem)	٧	٧	٧							
Integument	٧	٧	٧							
Color of skin, skin glands	٧	٧	٧							
Digestive system, oral cavity	٧	٧	٧							
Alimentary tract; esophagus	٧	٧	٧							
Digestive glands	٧	٧	٧	٧						
Urinary system(Im & tem)	٧	٧	٧	٧						
Juxta-glomerular apparatus, ureter, urinary bladders and urethra.	٧	٧	٧	٧						
Respiratory system	٧	٧	٧	٧						
Lung, Im & tem (bronchi & terminal bronchioles)	٧	٧	٧	٧						
Practical part					٧	٧	٧	٧	٧	٧

Comparative Anatomy of Invertebrates				
1642				
2014/2015				
Dr. Amal Iskander Khalil				
Dr. Mohamad I Sharshar	Dr. Mohamad Mona, Dr. El Sayed Taha, Dr. Khadega Sharshar			
Continuous academic year				
Graduate-MSc				
B. Sc, and equivalent degrees				
Lecture	28 x 2h lectures			
Practical	28 x 2h practicals			
Zoology Department				
September, 2014				
	1642 2014/2015 Dr. Amal Iskan Dr. Mohamad I Sharshar Continuous aca Graduate-MSc B. Sc, and equi Lecture Practical Zoology Depart			

1. Aims

The overall aim of the course is:

- To enable students to acquire principles, practices and informative knowledge concerning diversity and variations in the structures and functions of different anatomical and histological systems which in turn reflects biological diversities of free living and parasitic invertebrates with special reference on those in the Egyptian environment.
- To develop awareness of concepts underlying identification and differentiation of different taxa.
- To develop intellectual and practical skills to develop professional competence in the fields related to biodiversity, invertebrates and parasitology.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course students should be able to:

A1. Define the principles, concepts and terminology of structural taxonomy.

- A2. Recognize the diversity of invertebrates as expressed in their their morphology, anatomy, ultrastucture, biology and life cycles.
- A3. Indicates advanced techniques used in comparison between individuals of different taxa. indicate
- A4. Explains the mechanisms underlying structural variations and modifications within different taxa.

B. Intellectual skills:

Upon successful completion of the course students should be able to:

- B1. Demonstrate ability to differentiate between members of different taxa of invertebrates, in view of their comparative morphology, anatomy, ultrastucture and biology.
- B2. Predict keys for differentiation between taxa.
- B3. Distinguish closely related individuals which may serve as laboratory models.
- B4. Evaluate environmental and evolutionary factors involving structural diversity within invertebrates.

C. Professional and practical skills:

Upon successful completion of the course students should be able to:

- C1. Identify differentially between individuals within different taxa.
- C2. Detect structural variations within and between different taxa.
- C3. Present a professional report concerning structural variations among examined invertebrates.

D. General and transferable skills:

Upon successful completion of the course students should be able to:

- D1. Use information technology tools effectively to integrate information from a verity of scientific view points and contexts, and exercise independent thought and judgment.
- D2. Work independently as well as in a multidisciplinary team to reach a target for professional development.
- D3. Become capable of independent continuous learning.

Contents:

Part - 1

Lectures 1 Course specifications, objectives and introduction.

Lecture 2 Basic Concepts and Definitions.

Lecture 3 Comparative anatomy of different taxa:

study includes anatomy, histology and ultrastructure as they relate to the function of different systems (body wall and skeletal system; digestive system, food gathering and digestion; excretory system and excretion; respiratory system and respiration; circulatory system; nervous and neuro-endocrine systems and sense organs; immune system; reproductive system, reproduction, development and life cycle). The study gives special attention to taxa specific characteristics, and modifications of different structures.

Lecture 4	Animal Kingdom -Lower Non-coelomate Invertebrates:
Lecture 5	Phylum Cnidaria 1
Lecture 6	Phylum Cnidaria 2
Lecture 7	Phylum Ctenophora
Lecture 8	Phylum Platyhelminthes: Turbellaria
Lecture 9	Phylum Platyhelminthes: Digenea
Lecture 11	Phylum Platyhelminthes: Monogenea
Lecture 12	Phylum Platyhelminthes: Cestoda
Lecture 13	Phylum Rotifera
Lecture 14	Phylum Nematoda
Lecture 15	Phylum Acanthocephala
Lecture 16	Higher Coelomate Invertebrate
Lecture 17	Phylum Annelida 2
Lecture 18	Phylum Arthropoda: The Crustacea 1
Lecture 19	Phylum Arthropoda: The Crustacea 2
Lecture 20	PhylumArthropoda: Myriapoda
Lecture 21	Phylum Mollusca 1

Lecture 22	Phylum Mollusca 2
Lecture 23	Phylum: Chaetognatha
Lecture 24	Phylum Echinodermata
Lecture 25	Phylum Protochordata
Lecture 26	Seminar 1
Lecture 27	Seminar 2
Lecture 28	Seminar 3
Part - 2	
Lecture 1	Course specifications, objectives and introduction.
	Basic Concepts and Definitions.
Lecture 2	Research skills and scientific writing
Lecture 3	Comparative anatomy of different taxa:
	The study includes anatomy, histology and ultrastructure as they relate to the function of different systems (body wall and skeletal system; digestive system, food gathering and digestion; excretory system and excretion; respiratory system and respiration; circulatory system; nervous and neuro-endocrine systems and sense organs; immune system; reproductive system, reproduction, development and life cycle). The study gives special attention to taxa specific characteristics, and modifications of different structures.
	Protozoa
Lecture 4	Animal Kingdom -Lower Non-coelomate Invertebrates:
	Phylum Porifera
Lecture 5	Phylum Cnidaria 1
Lecture 6	Phylum Cnidaria 2
Lecture 7	Phylum Ctenophora
Lecture 8	Phylum Platyhelminthes: Turbellaria
Lecture 9	Phylum Platyhelminthes: Digenea

Lecture 10	Phylum Platyhelminthes: Monogenea
Lecture 11	Phylum Platyhelminthes: Cestoda
Lecture 12	Phylum Rotifera
Lecture 13	Phylum Nematoda
Lecture 14	Phylum Acanthocephala
Lecture 15	Higher Coelomate Invertebrates, Phylum Annelida 1, Phylum Annelida 2
Lecture 16	Phylum Arthropoda: The Crustacea 1
Lecture 17	Phylum Arthropoda: The Crustacea 2
Lecture 18	PhylumArthropoda: Myriapoda
Lecture 19	Phylum Mollusca 1
Lecture 20	Phylum Mollusca 2
Lecture 21	Phylum: Chaetognatha
Lecture 22	Phylum Echinodermata
Lecture 23	Phylum Protochordata
Lecture 24	Seminar 1
Lecture 25	Seminar 2
Lecture 26	Seminar 3
Lecture 27	Paper presentation
Weeks 28, 29	Assessment

Practical part

Class	Subject	Week
1	Microscope, calibration, orientation and safety	1
2	Specimen collection, processing and examination	2
3	Morphological, anatomical and microscopic examination of representative of different groups- objectives, principles and methods of assessment.	3

4	Phylum Porifera (Sponges)	4
5	Phylum Cnidaria :Hydrozoa, Scyphozoa, Cubozoa, Anthozoa	5
6	Phylum Ctenophora : Comb-jellies	6
7	Comparative review	7
8	Phylum Platyhelminthes: Turbellari and Digenea	8
9	Phylum Platyhelminthes: Monogenea	9
10	Phylum Platyhelminthes: Cestoda	10
11	Comparative review	11
12	Phylum Acanthocephala	12
13	Phylum Nematoda	13
14	Comparative review	14
15	Phylum Annelida 1	15
16	Phylum Annelida 2	16
17	Phylum Arthropoda: The Crustacea	17
18	Phylum Arthropoda: :Myriapoda	18
19	Comparative review	19
20	Phylum Mollusca	20
21	Phylum Mollusca	21
22	Phylum: Chaetognatha	22
23	Phylum Echinodermata	23
24	Phylum: Protochordata	24
25	Comparative review	25
26	Molluscs of medical importance	26
27	Crustaceans of medical importance	27
28	Revision	28

Teaching and Learning Methods

Lectures: Formal lecturing including visual presentations using overhead projectors, slide projector, PowerPoint presentations, blackboard and chalk, and seminars.

Practical classes: Including laboratories and experimental studies using prepared microscopic slides and specimens.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 32 nd Week	60%
Practical Examination	P, I	2 Hour Examination	The 30 th Week	40%

KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

List of references

6.1 .Course handouts.

6.2. Essential Books:

- Soliman, G. N. 2001. "Invertebrate Zoology The Mideastern Invertebrate Fauna. Pt II. The Coelomates". The Palm Press, Cairo, pp. 520.
- Soliman, G. N. 2006. "Invertebrate Zoology The Mideastern Invertebrate Fauna. Pt I second edition. The Noncoelomates". The Palm Press, Cairo, pp. 350.

6.3. Recommended Books.

- Barnes, R.S.K. 1984. Kingdom Animal. In A Synoptic Classification of Living Organisms. Ed. R.S.K. Barnes. Blackwell Scientific Publications.
- Beklemishev, W. N., 1969. Principles of Comparative Anatomy of Invertebrates: Edinburgh, Oliver and Boyd.
- Harrison, F.W. and Westfall, J.A. (Eds.) 1991. Microscopic anatomy of invertebrates, Volume 2: Placozoa, Porifera, Cnidaria, and Ctenophora. Wiley-Liss, New York
- Mehlhorn, H. 1988. Parasitology in Focus. Facts and Trends. Springer-Verlag Berlin Heidelberg.
- Olsen, O.W. Animal Parasites 1986. Their Life Cycles and Ecology. Baltimore University Park. Press.

Web sites:

http://www.eeescience.utoledo.edu/Faculty/Gottgens/EEES%202160/Lab %2012%20Invertebrates.pdfhttp://waterkid.net/Portfolio_Documents /Invert Comparative Anatomy Lab.pdf

"Comparative Anatomy," Microsoft® Encarta® Online Encyclopedia 2008.

http://encarta.msn.com © 1997-2008 Microsoft Corporation.

http://encarta.msn.com/encyclopedia_761586788/Comparative_Anatomy.html. Accessed January 13, 2009

Biology 3020. Introduction to Evolution. California State University Stanislaus Winter 2009. Dr. Steven J. Wolf.

http://arnica.csustan.edu/biol3020/anatomy/anatomy.htm. Accessed January 13, 2009

7. Facilities required for teaching and learning

Projectors: Data show, overhead, and slide projectors.

Laboratory well equipped with internet connection.

Computer presentations and writing boards

Microscopes; compound and stereoscopic.

Microscopic mounted preparations.

Live animals for dissection and examination.

Ocular and stage micrometers.

USB microscopes.

Camera Lucida.

Scientific films and CDs, Library

	Course Coordinator	Head of Department
Name	Amal Iskander Khalil	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ.د. آمال إسكندر عبد الملك خليل	أ. د.نبيل كمال الفقى
Signature		
Date	9-2014	9-2014

Course title		Intended learning outcomes ILOs												
		KU I				P			T					
	A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	C 1	C 2	C 3	D 1	D 2	D 3
Basic Concepts and Definitions.	٧													
Research skills and scientific writing												1		
Comparative anatomy of different taxa		٧		٧				٧						
Animal Kingdom - Lower Non- coelomate Invertebrates		٧			٧				٧	٧				
Phylum Cnidaria 1		٧			٧				٧	٧				
Phylum Cnidaria 2		٧			٧				٧	٧				
Phylum Ctenophora		٧			٧				٧	٧				
Phylum Platyhelminthes: Turbellaria		٧			٧				٧	٧				
Phylum Platyhelminthes: Digenea		٧			٧				٧	٧				
Phylum Platyhelminthes: Monogenea		٧			٧				٧	٧				
Phylum Platyhelminthes: Cestoda		٧			٧				٧	٧				
Phylum Rotifera		٧			٧				٧	٧				

Phylum Nematoda	٧		٧			٧	٧			
Phylum Acanthocephala	٧		٧			٧	٧			
Higher Coelomate Invertebrates2	٧		٧			٧	٧			
Phylum Arthropoda: The Crustacea 1	٧		٧			٧	٧			
Phylum Arthropoda: The Crustacea 2	٧		٧			٧	٧			
PhylumArthropoda : Myriapoda	٧		٧			٧	٧			
Phylum Mollusca 1	٧		٧			٧	٧			
Phylum Mollusca 2	٧		٧			٧	٧			
Phylum:	٧		٧			٧	٧			
Chaetognatha										
Phylum	٧		V			٧	٧			
Echinodermata										
Phylum	٧		V			٧	٧			
Protochordata										
Seminar 1	٧		٧	٧	٧	٧	٧	٧		
Seminar 2	٧		٧	٧	٧			٧		
Seminar 3	٧		٧	٧	٧			٧		
Paper	٧		V	٧	٧			٧	٧	٧
presentation										
Practical content			٧							
Microscope,		٧	٧							
calibration,										
orientation and										
safety										

Specimen collection, processing and examination		٧	٧					
Morphological, anatomical and microscopic examination	٧	٧	٧	V				
Phylum Porifera (Sponges)		٧	٧		٧	٧		
Phylum Cnidaria		٧	٧		٧	٧		

Phylum Ctenophora : Comb-jellies	٧	٧			٧	٧		
Comparative review	٧	٧			٧	٧		
Phylum Platyhelminthes: Turbellari and Digenea	V	٧			√	٧		
Phylum Platyhelminthes: Monogenea	٧	٧			٧	٧		
Phylum Platyhelminthes:C estoda	٧	٧			٧	٧		
Comparative review	٧	٧			٧	٧		
Phylum Acanthocephala	٧	٧			٧	٧		
Phylum Nematoda	٧	٧			٧	٧		
Comparative review	٧	٧	٧		٧	٧		
Phylum Annelida 1	٧	٧			٧	٧		
Phylum Annelida 2	٧	٧			٧	٧		
Phylum Arthropoda: The Crustacea	٧	٧			٧	٧		
Phylum Arthropoda: :Myriapoda	٧	٧			٧	٧		
Comparative review	٧	٧			٧	٧		
Phylum Mollusca	٧	٧			٧	٧		
Phylum Mollusca	٧	٧			٧	٧		

Phylum: Chaetognatha	٧	٧		٧	٧	
Phylum Echinodermata	٧	٧		٧	٧	
Phylum: Protochordata	٧	٧		٧	٧	
Comparative review	٧	٧	٧	٧	٧	
Molluscs of medical importance	٧	٧		٧	٧	
Crustaceans of medical importance	٧	٧		٧	٧	
Revision		V		٧	٧	

Course Title	Invertebrate Embr	Invertebrate Embryology					
Course Code	1643						
Academic Year	2014/2015						
Coordinator	Prof. Samia Hanim	Hameem Eissa					
Other Staff	Prof. Mohamed M Bakr.	Prof. Mohamed Mona, Prof. Fayez Shoukr, Prof. Ibrahim Bakr.					
Semester	One continuous ac	One continuous academic year					
Level	Graduate – MSc						
Pre-Requisite							
Course Delivery	Lecture	28 × 2h lectures					
	Practical	Practical 28 × 2h practicals					
Parent Department	Zoology Departme	Zoology Department					
Date of Approval	9-2014						

1. Aims

The course in embryology emphasizes the development of invertebrates to provide the student with a solid foundation of the major principles of development and comparative patterns of invertebrate embryology. The student will master the basics of development from gametogenesis, fertilization, cleavage and early development, histogenesis, organogenesis to hatching, metamorphosis or birth. These topics will be approached from both the structural point of view of classical embryology and the more recent molecular mechanistic viewpoint. The course will focuse on comparative mechanisms of development and will examine the development of a variety of invertebrate embryos. So, the student will be able to make comparisons of the development of various life forms, noting similarities and differences, relating them to the evolutionary concept.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course students should be able to :

- A1. describe the process of gamete production, fertilization and the major events that characterize the early stages of animal development.
- A2. explain of how genetic information is used to produce different cell types.
- A3. clarify the general pattern of development in representative invertebrate groups.

B. Intellectual skills:

They will also acquire the ability to:

- B1. Distinguish between the different stages of animal development and estimate the required time for each stage.
- B2. compare of the development of various life forms in representative invertebrate groups.
- B3. compare between the different groups and relating them to the evolutionary concept.
- B4. analyse the problem of growth, and develop an understanding of factors that influence and regulate cell division.

C. Professional and practical skills:

- C1. dissect invertebrate animals to collect and preserve mature gametes.
- C2. perform in vitro fertilization.
- C3. design experiments involved in studying developmental processes.
- C4. examine and draw prepared slides and models of each developmental stage.

D. General and transferable skills:

- D1. use the internet and other electronic sources as a source of information.
- D2. analyze information needed for solving a problem.
- D3. communicate ideas and concepts verbally and in writing.

3. Content

- Lecture 1 Course specification, objectives and the syllabus.
- Lecture 2 Course introduction, what is embryology. Basic pattern of embryogenesis, (protostomes and deuterostomes).
- Lecture 3 Principles of experimental embryology. Fundamental points in growth and development.
- Lecture 4 Common features of sex cell differentiation. Gametogenesis : Oogenesis.

 Types of eggs.
- Lecture 5 Spermatogenesis, ultrastructure of mature sperm. Types of sperms, sperm dimorphism.
- Lecture 6 Discharge and union of sex cells. Ovulation, semination, fertilization (Beginning a new organism).

- Lecture 7 Types of cleavage, blastulation and blastomere specification. Gastruclation and fate maps.
- Lecture 8 Early development of selected invertebrates : Phylum Protozoa : Types of reproduction, normal development.
- Lecture 9 Phylum Porifera: types of reproduction, Normal development.
- Lecture 10 Phylum Cnidaria, Class Hydrozoa : Egg stage, cleavage and germ layer formation.
- Lecture 11 Class Scyphozoa: egg stage, cleavage and germ layer formation.
- Lecture 12 Class Anthozoa : egg stage, cleavage and germ layer formation.
- Lecture 13 Phylum Ctenophora : The shape and structure of egg, and normal development.
- Lecture 14 Phylum Platyhelminthes: structure of egg, fertilization, laying, cleavage, normal development and regeneration. Class: Turbellaria.
- Lecture 15 Phylum Platyhelminthes, Class: Digenea
- Lecture 16 Phylum Platyhelminthes, Class: Monogenea
- Lecture 17 Phylum Platyhelminthes, Class: Cestoda
- Lecture 18 Phylum Nemata: Reproduction, development and life cycle.
- Lecture 19 Phylum Annelida: Organization of the egg, fertilization, segmentation and early development.
- Lecture 20 Phylum Mollusca: Class Bivalvia: The ovarian egg, the mature eggs, Normal development.
- Lecture 21 Phylum Mollusca: Class Gastropoda: Ovoposition, Oogenesis, cleavage and gastrulation. Embryogenesis and organogenesis.
- Lecture 22 Phylum Mollusca: Class Cephalopoda: Structure of the egg and its accessory coats. Structure and function of the spermatophore. Fertilization and early development cleavage.
- Lecture 23 Class Cephalopoda: Development of the germ layers and organogenesis.
- Lecture 24 Phylum Arthropoda : Class Crustacea : The egg and its segmentation, types of eggs, oogenesis.
- Lecture 25 Class Crustacea: Formation of the germ layers and organogeny.

- Lecture 26 Phylum Echinodermata : Echinoids, normal development, cell lineage, animalization and vegetalization.
- Lecture 27 Sex determination, metamorphosis and regeneration.
- Lecture 28 Environmental regulation of animal development.

Assessment

Lab. Sequence

1	Embryological tools					
2	Using the compound microscope					
	Gametogenesis					
3	Handling and care of animals.					
	Methods of obtaining gametes.					
4	Preparing a pure sperm suspension.					
	Preparing artificial seawaters.					
5	Fertilization & culturing (Echinoid fertilization).					
6	Embryo culture & larval growth.					
7,8,9	Experimental investigations of sea-urchin development [vegetalization and					
	animalization phenomena].					
10	The living embryo and making of whole mounts.					
11	Staining with different whole mount stains.					
12,13,14	Histological techniques.					
15	Parthenogenic activation of sea urchin eggs.					
16-27	Applying previous methods on selected examples of invertebrate animals as:					
	Hydra sp. Planaria sp., Daphnia sp., Artemia sp., Freshwater crayfishes, Freshwater					
	snails.					
28	Revision					

4. Teaching and Learning Methods

- Lectures .
- practical classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	P	2 Hour Examination		40%

^{*} KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable.

6. List of references

Essential Books:

- **Gilbert, S.F. 2006.** "Developmental Biology". Sinauer Associates : Sunderland.

- Johnson, L.G. 2001. "Patterns & experiments in Developmental Biology". 3rd ed.;
 McGraw Hill: New York.
- Kume, M. and Dan, K. 1968. "Invertebrate Embryology". Bai Fu Kan Press, Tokyo.
- **Reverberi, G. 1971**. "Experimental embryology of marine and freshwater invertebrates". North-Holland Publishing Company, Amsterdam. London.
- **Saunders, J.W. 1970**. "Patterns and principles of animal development". Collier macmillan Publishers, London.
- **Soliman, G.N. 2006**. "Invertebrate Zoology The Mideastern Invertebrate fauna. Pt I. second edition. The noncoelomates". The Palm Press, Cairo, pp. 350.

Web sites:

- http://www.devbio.com.
- http://www.ucalgary.ca/u of c/ eduweb/ virtualembryo /dbtutorial. html.

7. Facilities required for teaching and learning

Projectors : Data show, overhead, and slide projectors. Microscopes; compound and stereoscopic.

Live animals for dissection and collecting gametes. Prepared slides and prepared models for gametogenesis and different stages of development. Scientific films and CDS. Library.

	Course Coordinator	Head of Department
Name	Prof. Samia Hanim Hameem Eissa	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ.د/ سامية هانم حميم عيسى	أ. د.نبيل كمال الفقى
Signature		
Date	9-2014	9-2014

Course title		Intended learning outcomes ILOs												
		KU]				I)			T	
	A 1	A 2	A 3	B 1	B 2	B 3	B 4	C 1	C 2	C 3	C 4	D 1	D 2	D 3
introduction	-	٧		-	_		-	-			-	-		
Principles of experimental embryology		٧												
Common features of sex cell differentiation. Gametogenesis: Oogenesis. Types of eggs.	٧													
Spermatogene sis	٧													
Discharge and union of sex cells.	٧													
Types of cleavage, blastulation and blastomere specification. Gastruclation and fate maps.	٧			٧										
Early development of selected invertebrates	٧		٧		٧	٧								
Phylum Porifera: types of reproduction, Normal			٧		٧	٧								

development.							
development.							
Phylum Cnidaria, Class Hydrozoa : Egg stage, cleavage and germ layer formation.	٧	٧	٧				
Class Scyphozoa : egg stage, cleavage and germ layer formation.	٧	٧	٧				
Class Anthozoa : egg stage, cleavage and germ layer formation.	>	٧	٧				
Phylum Ctenophora: The shape and structure of egg, and normal development.	٧	٧	٧				
Phylum Platyhelminthe s: structure of egg, fertilization, laying, cleavage, normal development and regeneration. Class: Turbellaria.	٧	V	V				

Phylum Platyhelminthe s, Class : Digenea	٧	٧	٧				
Phylum Platyhelminthe s, Class : Monogenea	✓	٧	٧				
Phylum Platyhelminthe s, Class : Cestoda	٧	٧	٧				
Phylum Nemata: Reproduction, development and life cycle.	٧	٧	٧				
Phylum Annelida: Organization of the egg, fertilization, segmentation and early development.	٧	V	٧				
Phylum Mollusca: Class Bivalvia: The ovarian egg, the mature eggs, Normal development.	٧	V	٧				
Phylum Mollusca : Class Gastropoda : Ovoposition,	٧	٧	٧				

Oogenesis, cleavage and gastrulation. Embryogenesis and							
organogenesis.							
Phylum Mollusca: Class Cephalopoda: Structure of the egg and its accessory coats. Structure and function of the spermatophore . Fertilization and early development cleavage.	٧	٧	٧				
Class Cephalopoda: Development of the germ layers and organogenesis.	٧	٧	V				
Phylum Arthropoda: Class Crustacea: The egg and its segmentation, types of eggs, oogenesis.	V	V	V				
Class Crustacea : Formation of the germ layers and	٧	٧	٧				

organogeny.										
Phylum Echinodermata : Echinoids, normal development, cell lineage, animalization and vegetalization.		٧	٧	٧						
Sex determination, metamorphosi s and regeneration.		V	٧	√					V	٧
Environmental regulation of animal development.					~					
Embryological tools										
Using the compound microscope Gametogenesis										
Handling and care of animals. Methods of obtaining gametes.						٧				
Preparing a pure sperm suspension.							٧			

Droparing									
Preparing									
artificial									
seawaters.									
Fertilization &				٧					
culturing									
(Echinoid									
fertilization).									
Ter emzacrony.									
Embryo culture					٧	٧	٧	٧	
& larval									
growth.									
From audience of all					-1	-1	-,	-1	
Experimental					٧	٧	٧	٧	
investigations of sea-urchin									
development									
[vegetalization									
and									
animalization									
phenomena].									
The living					٧	٧	٧	٧	
embryo and									
making of									
whole mounts.									
Staining with					٧	٧	٧	٧	
different whole									
mount stains.									
Histological					٧	٧	٧	٧	
techniques.					v	, v	\ \ \	v	
techniques.									
Parthenogenic					٧	٧	٧	٧	
activation of									
sea urchin									
eggs.									
A 1					,				
Applying					٧				
previous									
methods on									
selected									
examples of									
invertebrate									

animals as:								
Hydra sp. Planaria sp., Daphnia sp., Artemia sp., Freshwater crayfishes, Freshwater snails.								
3110113.								
Revision						٧	٧	٧

Course Title	Invertebrate P	hylogeny					
Course Code	1644						
Academic Year	2014/2015						
Coordinator	Prof. Fayez sho	oukr					
Other Staff	Prof. Amal Esk	ander, Dr. Hoda Kamal, Dr. Nahla Omran					
Semester	Semester – 1&	2					
Level	Graduate-MSc pre-requisit						
Pre-Requisite	B. Sc, and equi	valent degrees					
Course	Lecture	28 x 2h lectures					
Delivery							
	Practical	28 x 2h practicals					
Parent	Zoology Depar	tment					
Department							
Date of	September,201	.4					
Approval							
	1						

1. Aims

The objectivs of invertebrate phylogeny course is

- To understand the modern theories of Phylogeny based on morphological and molecular characters along cladogrms or phylogenetic trees.
- Classification based strictly on morphology, primarily types of body cavities, development, larval forms, segmentation, etc.
- Know the molecular phylogenetic trees and study the genes (DNA and RNA) contained within animal cells
- Learn the fundamentals of phylogenetic analysis, including how to assemble a dataset of taxonomic characters, including morphological and molecular characters with the way in which molecular techniques can be used to explore evolutionary relationships.
- Give a survey of the invertebrates with emphasis on evolutionary relationships within, between, and among constituent phyla.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A1. explain the phylogenetic tree of the Kingdom Animalia.
- A2. recognize that the Anthozoa appear to be basal within Cnidaria.
- A3. mention that the Protostomates appear to be divided into two major clades: Ecdysozoa and Lophotrochozoa. Annelida and Arthropoda belong to Lophotrochozoa and Ecdysozoa, respectively, and are therefore not closely related.
- A4. state that the Lophotrochozoa, include animals with trochophore larvae and feeding organ called lophophore. Flatworms appear to be lophotrochozoans rather than basal to other Bilateria.
- A5. indicate that the Ecdysozoa include animals that molts.
- A6. clarify the molecular evidence which supports the conventional phylogeny of echinoderm classes that Concentricycloids may be asteroids.

B. Intellectual skills:

Upon successful completion of this course the student should be able to:

- B1. distinguish the evolutionary relationships that link the invertebrate animal phyla.
- B2. analyse that a character which is consistent with both a morphological and a molecular phylogeny is more likely to be phylogenetically informative.
- B3. Summarize the molecular phylogeny of the Animal Kingdom.

C. Professional and practical skills:

Upon successful completion of this course the student should be able to:

- C1. collect and preserve invertebrates of the local fauna.
- C2. perform the skills required for Identification and description of the
- taxonomic groups of local organisms from more primitive (simple) to more advanced (complex) along a cladogrma or phylgenetic tree.
- C3. use the basic features of animal design with a preliminary insight into invertebrate phylogeny.

D. General and transferable skills:

They will also acquire the ability to:

- D1. use PC ,the internet and the electronic library for writing scientific essays and give oral presentation or Posters.
- D2. work effectively with other as a part of a team to collect data and visual forms

- D3. become capable of Self-learning with update continuous learning.
- D4. solve problems relating to the phylogenetic tree of the Kingdom Animalia.

3. Content

Lectures

- Lecture 1 Course specifications & objectives Introduction to Invertebrate Phylogeny.
- Lecture 2 Phylogeny of living organisms (Phylogenetic Tree of Life). Phylogenetic tree or dendrogram of Kingdom Animalia (Animal Phylogeny).
- Lecture 3 Morphological characters of body plan traditionally used in invertebrate Phylogeny. : Symmetry, germ layers, body cavity, coelom,
- Lecture 4 Morphological characters of body plan traditionally used in invertebrate Phylogeny. : mouth origin, cleavage .
- Lecture 5 Molecular phylogeny of the animal kingdom. New look in invertebrate Phylogeny based on Molecular characters.
- Lecture 6 Teaching Animal Molecular Phylogenetics
- Lecture 7 Protista Kingdom Protistan Phylogeny
- Lecture 8 Phylogeny of Protozoa.
- Lecture 9 Animal Kingdom -Lower Non-coelomate Invertebrates:
 - Parazoa- Porifera (sponges).
- Lecture 10 Phylogenetic relationships & of Sponges.
- Lecture 11 Metazoa Origin of Metazoa -
- Lecture 12 Theory of multicelluarity (Colonial Theory & Syncytial theory).
- Lecture 13 Radiata Phylogeny of Radiate Phyla (Cnidaria and Ctenophora): Phylogenetic Relationships of Cnidaria based on morpholgical characters.
- Lecture 14 Molecular Phylogeny of Cnidaria.
- Lecture 15 Phylogeny of the Phylum Ctenophora The comb jellies.
- Lecture 16 Bilateria Phylogeny of Bilaterian Phyla:
- Lecture 17 Phylogeny of the Phylum Platyhelminthes (flatworms).

Lecture 18	Phylogeny of the Phylum Nematoda (Nemata).
Lecture 19	Phylogeny of the Phylum Nematoda (Nemata).
Lecture 20	Higher Coelomate Invertebrates
	(Protostomes): The Lophotrochozoa - Edysozoa Dichotomy
	The "Lophotrochozoa"
Lecture 21	Phylogeny of the Phylum Mollusca.
Lecture 22	Phylum Annelida.
Lecture 23	The "Ecydysozoa" Arthropods.
Lecture 24	The "Ecydysozoa" Arthropods.
Lecture 25	Higher Coelomate Invertebrates (Deuterostomes): Phylum Echinodermata.
Lecture 26	Guidelines for writing Master thesis and research papers in Invertebrates.
Lecture 27	Using the internet, multimedia & presentation methods in Invertebrates.
Lecture 28	Paper Discussion (a journal article).
Assessmen	

Laboratory Schedule

Lab. 1	Introduction to laboratory Study.
Lab. 2	Collection and Preservation of Invertebrates.
Lab. 3	Identification of Invertebrates.
Lab. 4	Protista Kingdom - Protozoa.
Lab. 5	Protista Kingdom - Protozoa.
Lab. 6	Protista Kingdom - Protozoa.
Lab.7	Animal Kingdom Parazoa- Phylum Porifera (sponges).
Lab. 8	Phylum Porifera (sponges).
Lab. 9	Radiata - Phylum Cnidaria.
Lab.10	Phylum Cnidaria.

Lab. 11	Phylum Cnidaria.								
Lab. 12	Phylum Ctenophora The comb jellies.								
Lab. 13	Bilateria - Phylum Platyhelminthes (flatworms).								
Lab. 14	Phylum Platyhelminthes (flatworms).								
Lab.15	Phylum Platyhelminthes (flatworms).								
Lab. 16	Phylum Nematoda (Nemata).								
Lab. 17	Phylum Nematoda (Nemata).								
Lab. 18	Higher Coelomate Invertebrates.(Protostomes): The "Lophotrochozoa" Phylum Mollusca.								
Lab. 19	Phylum Mollusca.								
Lab. 20	Phylum Mollusca.								
Lab. 21	Phylum Annelida.								
Lab. 22	Phylum Annelida.								
Lab. 23	The "Ecydysozoa" Arthropods.								
Lab. 24	The "Ecydysozoa" Arthropods.								
Lab. 25	The "Ecydysozoa" Arthropods.								
Lab. 26	Higher Coelomate Invertebrates (Deuterostomes): Phylum Echinodermata.								
Lab. 27	Phylum Echinodermata.								
Lab. 28,29,30	Revision.								
Weeks 31,32	Assess.								

4. Teaching and Learning Methods

- 4.1. Lectures using Laptop & Data show overhead projector and power point.
- 4.2. Practical classes using preserved or fresh specimens or photographs of rare specimens, museum specimens for different animals as well as microscopic slides.

- 4.3. Internet and library research for preparing an essay on specific topics related to the course with oral presentation.
- 4.4. Writing Reports for Practical classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 32 th Week	60%
Practical Examination	Р	2 Hour Examination	The 30 th Week	40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

6.1 .course notes:

- Lectures notes Authorized by Zoology Department, Faculty of Science,
 Tanta University, Egypt.
- Practical notes Authorized by Zoology Department, Faculty of Science,
 Tanta University, Egypt.

6.2. Essential Books:

Soliman, G. N. 2001 "Invertebrate Zoology - The Mideastern Invertebrate Fauna.

Pt II. The Coelomates". The Palm Press, Cairo, pp. 520.

Soliman, G. N. 2006 "Invertebrate Zoology - The Mideastern Invertebrate Fauna.

Pt I second edition. The Noncoelomates". The Palm Press, Cairo, pp. 350.

6.3. Recommended Books:

Willmer, P. 1990. Invertebrate Relationships: Patterns in animal evolution.

Cambridge University press, Cambridge, 416 pages, ISBN-10: 0521337127

www.cambridge.org/us/9780521337120

Conway Morris, S. et al. 1985. The Origins and Relationships of Lower

Invertebrates. New York: Oxford University Press.

Raven, Peter H.; Johnson, George B.; Singer, Susan R.; Losos, Jonathan B.

(2004): Biology. McGraw-Hill Science/Engineering/Math, U.S.A. ISBN 10: 0072921641

Hillis, D. M., C. Moritz, and B. K. Mable (Eds). 1996. Molecular Systematics, 2nd

Ed. Sunderland MA: Sinauer Assoc.

Ruppert, E. E., R. S. Fox, and R. D. Barnes. 2004. Invertebrate Zoology: A

Functional Evolutionary Approach. 7th ed. Brooks/Cole – Thomson

Learning, Inc., US.

6.4. Periodicals (journals), Web sites, etc

Search Engines

http://www.google.com

http://www.alltheweb.com

Invertebrate Systematics

Invertebrate Systematics is an international journal publishing significant contributions and reviews on the systematics and phylogeny of invertebrate

www.publish.csiro.au/nid/120.htm

Journal of Evolutionary Biology

www.blackwellpublishing.com/jeb_enhanced/Systematic Biology

http://www.utexas.edu/ftp/depts/systbiol/info/issues.html

Major Journals of Molecular Phylogenetics:

Journal of Molecular Evolution

http://link.springer.de/link/service/journals/00239/index.html

Molecular Biology and Evolution

http://www.molbiolevol.org/

Molecular Phylogenetics and Evolution

http://www.apnet.com/www/journal/fy.htm

Casey Dunn et al, 2008.Broad phylogenetic sampling improves resolution of the animal tree of life. Nature Online (5 March 2008) .

http://www.nature.com/

Adoutte, A. G. et al. 2000. The new animal phylogeny: reliability and implications. *Proc. Natl. Acad. Sci. USA* 97:4453-4456.

http://www.pnas.org/cgi/content/full/97/9/4453

161

M.Sc. programme of Comparative Anatomy of Invertebrates

- Bridge, D. et al. 1992. Class-level relationships in the phylum Cnidaria: Evidence from mitochondrial genome structure. *Proc. Natl. Acad. Sci. USA* 89:8750-8753.
- Bridge, D., C. W. Cunningham, R. DeSalle, and L. W. Buss. 1995. Class-level relationships in the phylum Cnidaria: Molecular and morphological evidence. *Mol. Biol. Evol.* 12:679-689.
- Cavalier-Smith, T. M. et al. 1996. Sponge phylogeny, animal monophyly, and the origin of the nervous system: 18S rRNA evidence. *Can. J. Zool.* 74:2031-2045.
- Field, K. G. et al. 1988. Molecular phylogeny of the animal kingdom. *Science* 239:748-753.
- Smith, M. J., A. Arndt, S. Gorski, and E. Fajber. 1993. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. J. Mol. Evol. 36:545-554.

7. Facilities required for teaching and learning

- 7.1 . Computer halls for Data show with laptop, video clips, films, overhead projector and transparence sheets.
- 7.2 . internet and well equipped laboratory with preserved specimens, dry or wet, living specimens, slides.
- 7.3 . course website.

Recommendations

- 1- Internet assignement with scientific Poster or ppt and Oral Presentations about specific topics related to the course. Each student will look up information on the internet. Throughout the course, data will be gathered. Posters or ppt will be presented orally during the last course.
- 2-Course Website: The course website contains all the information present in this syllabus plus additional resources including downloadable course notes, laboratory manuals, required and supplemental readings, animations, videoclips and announcements.

	Course Coordinator	Head of Department
Name	Prof. Fayez A. Shoukr	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. فايز عبد المقصود شكر	أ. د.نبيل كمال الفقى
Signature		
Date	9-2014	9/2014

contents							inter	ided	learr	ning (outco	mes	ILOs	8		
		KU						I			P]	Γ	
	A						В	В	В	C	C	C	D	D	D	D
	1	2	3	4	5	6	1	2	3	1	2	3	1	2	3	4
Course	٧															
specifications&																
objectives																
Introduction to																
Invertebrate																
Phylogeny.																
Phylogeny of living	٧						٧	٧								
organisms																
(Phylogenetic Tree																
of Life).																
Phylogenetic tree																
or dendrogram of																
Kingdom Animalia																
(Animal																
Phylogeny).																
Morphological	٧						٧	٧								
characters of body	•						•									
plan traditionally																
used in																
invertebrate																
Phylogeny. :																
Symmetry, germ																
layers,body																
cavity,coelom,																
								_								
Morphological						٧	٧	٧								
characters of body plan traditionally																
used in																
invertebrate																
Phylogeny. :																
mouth origin,																
cleavage .																
Molecular						٧										
phylogeny of the																
animal kingdom.																

	<u> </u>		1		1	1	1		- 1	
New look in										
invertebrate										
Phylogeny based										
on Molecular										
characters.										
characters.										
Teaching Animal										
Molecular										
Phylogenetics										
Filylogenetics										
Protista Kingdom -										
Protistan										
Phylogeny										
Phylogeny										
Phylogeny of				++,	v	+				
Protozoa.					-					
11000204.										
Animal Kingdom -			1 1	1 1,	V	1				
Lower Non-										
coelomate										
Invertebrates:										
Parazoa- Porifera										
(sponges).										
(sponges).										
Phylogenetic				١,	ا					
relationships & of										
Sponges.										
Sponges.										
Metazoa- Origin of	V			1 ,	V					
Metazoa -										
Mictazoa										
Theory of	٧			,	٧					
multicelluarity										
(Colonial Theory &										
Syncytial theory).										
Syncytial theory).										
Radiata -	V		1	1 1,	V	1				
Phylogeny of										
Radiate Phyla										
•										
(Cnidaria and										
Ctenophora): -										
Phylogenetic										
Relationships of										
Cnidaria based on										
1	I									

morpholgical characters.									
Molecular Phylogeny of Cnidaria.	٧				٧				
Phylogeny of the Phylum Ctenophora The comb jellies.	٧				٧				
Bilateria - Phylogeny of Bilaterian Phyla :					٧				
Phylogeny of the Phylum Platyhelminthe s (flatworms).					<				
Phylogeny of the Phylum Nematoda (Nemata).					٧				
Phylogeny of the Phylum Nematoda (Nemata).					٧				
Higher Coelomate Invertebrates (Protostomes): The Lophotrochozoa - Edysozoa Dichotomy The "Lophotrochozoa"		٧	٧		٧				
Phylogeny of the Phylum Mollusca.					٧				

Phylum Annelida.						٧								
Triylani Amenda.						•								
The "Ecydysozoa"		٧	٧			٧								
Arthropods.														
The "Ecydysozoa"		٧	٧			٧								
Arthropods.														
Higher Coelomate														
Invertebrates														
(Deuterostomes):														
Phylum														
Echinodermata.														
Guidelines for														
thesis and														
research papers in														
Invertebrates.														
Using the internet,											٧		٧	
multimedia &											_			
presentation														
methods in														
Invertebrates.														
mivertebrates.														
Paper Discussion							V					٧	٧	٧
(a journal article).														
Practical														
content														
Introduction to														
laboratory Study.														
laboratory Study.														
Collection and								٧	٧					
Preservation of														
Invertebrates.														
Identification of								٧	٧					
Invertebrates.														
Protista Kingdom -		+				V			٧					
Protozoa.						"			٧					
1101020a.														
	I		1	<u> </u>	1	L	l	l		<u> </u>	<u> </u>	L	l	

Protista Kingdom - Protozoa.		٧	٧		
Protista Kingdom - Protozoa.		٧	٧		
Animal Kingdom Parazoa- Phylum Porifera (sponges).		٧	٧		
Phylum Porifera (sponges).		٧	٧		
Radiata - Phylum Cnidaria.		٧	٧		
Phylum Cnidaria.		٧	٧		
Phylum Cnidaria.		٧	٧		
Phylum Ctenophora The comb jellies.		٧	٧		
Bilateria - Phylum Platyhelminthe s (flatworms).		\	٧		
Phylum Platyhelminthe s (flatworms).		٧	٧		
Phylum Platyhelminthe s (flatworms).		٧	٧		
Phylum Nematoda (Nemata).		٧	٧		
Phylum Nematoda (Nemata).		٧	٧		
Higher Coelomate		٧	٧		

	, , ,	- 1	1 1	 			 - 1	1	
Invertebrates.(Pro									
tostomes): The									
"Lophotrochozoa"									
Phylum Mollusca.									
Phylum Mollusca.				٧	٧				
Phylum Mollusca.				٧	٧				
Phylum Annelida.				٧	٧				
Phylum Annelida.				٧	٧				
The "Ecydysozoa"				V	V				
Arthropods.									
The "Ecydysozoa"				V	٧				
Arthropods.									
The "Ecydysozoa"				V	٧				
Arthropods.									
Higher Coelomate				٧	٧				
Invertebrates									
(Deuterostomes):									
Phylum									
Echinodermata.									
Phylum				V	٧				
Echinodermata.									
Revision.					٧				

Course Title	Biostatistics	
Course Code	1648	
Academic Year	2013/2014	
Coordinator	Prof. Abd-Elmoneim	Anwar Mohamed
Other staff		
Level	Preparatory level of	MSC
Semester	Semesters	
Pre-Requisite	B. Sc. Zoology	
Course delivery	Lecture	28 x 1h lectures
	Practical	-
Parent	Mathematics Depart	ment
Department		
Date of	September 2014	
Approval		

1. Aims

This module aims to

- provide M. Sc. students in biology with basic concepts of study design and data analysis suitable for laboratory and field research
- to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific biological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of this course the students should be able to:

- A17. enumerate statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A18. mention the basic principles of study design.
- A19. describe the types of variables that are used in biological research.
- A20. explain the role of sampling variation, to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B13. Discuss confidently simple essential statistical methods in biological research and to interpret results.
- B14. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B15. summarise data using graphical and tabular data.
- B16. interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C10. select and apply appropriate basic statistical methods for analysis of data.
- C11. use GraphPad package in data analysis.
- C12. tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D13. write report including graphical material.
- D14. present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D15. use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

- Lectures 1 Introduction: Variables and distributions.
- Lectures 2-3 Summarizing data.
- Lectures 4-5 Sampling variability of a mean.
- Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples.
- Lectures 8-9 ANOVA: Comparing more than two samples.
- Lecture 10 Examination.
- Lectures 11-12 Sampling variability of proportions.
- Lectures 13-14 Analysis of categorical data; comparing two proportions
- Lectures 15-16 Regression and correlation.

- Lectures 17-18 Comparing correlations and regression. Multiple regressions.
- Lectures 19-20 Regression and correlation: Computer applications.
- Lectures 21-22 Comparing distribution: Computer applications.
- Lectures 23-24 Comparing means: Computer applications.
- Lectures 25-26 Comparing variances: Computer applications.
- Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis.
- Lectures 29-30 Revision

Weeks 31, 32 Assessment

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 32 th Week	90%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill.

Recommended books

- Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.

 Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Abd-Elmoneim A. Mohamed	Prof Qadry Zakaria
Name (Arabic)	أ. د. عبد المنعم محمد طعيمه	أ. د. قدری زکریا
Signature		
Date	/9/2014	/9/2014

Course					Inten	ded le	arnin	g out	comes	ILOs				
title		K	U]	[P			T	
	A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	C 1	C 2	C 3	D 1	D 2	D 3
Introductio n:	٧	٧	٧	٧										
Summarizin g data.	٧	٧	٧	٧										
Sampling variability of a mean.	٧	٧	٧	٧										
Analysis of quantitative data	٧	٧	٧	٧										
ANOVA	٧	٧	٧	٧	V	V	V	٧						
Examination	٧	٧	٧	٧										
Sampling variability of proportions	٧	٧	٧	٧										
Analysis of categorical data	٧	٧	٧	٧		٧								
Regression and correlation.	٧	٧	٧	٧										
Comparing correlations	٧	٧	٧	٧										
Regression and correlation: Computer applications	٧	٧	٧	٧					V	V	V	V	٧	√

Comparing	٧	٧	٧	٧			٧	٧	٧	٧	٧	٧
distribution												
: Computer												
applications												
Comparing	٧	٧	٧	٧			٧	٧	٧	٧	٧	٧
means:												
Computer												
applications												
Comparing	٧	٧	٧	٧			٧	٧	٧	٧	٧	٧
variances:												
Computer												
application												

Course Title	Computer	
Course Code	1647	
Academic Year	2014/2015	
Coordinator	Prof. Mohame	d El-Awady
Other Staff	Prof. Mahmou Qadry Zakaria	d Kamel, Prof. Ahmed El-Shishtawy, Prof.
Semester	Taught over 2	semesters
Pre-Requisite	B.Sc.	
Course Delivery	Lecture	28 x 1h lectures
	Practical	28 x 1h practicals
Parent	Computer Cei	ntre
Department		
Date of Approval	September, 2	014

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- Underpin academic work throughout postgraduate studies.
- Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

Upon successful completion of this course the students should be able to:

- A1. Mention the use of IT in the context of the postgraduate studies.
- A2. Define the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A3. Describe different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B3.Integrate different application programs to develop effective information analysis and presentation.

B4. Solve scientific problems using computer programming.

C. Professional and practical skills:

- C1. Use a number of computer packages to present information.
- C2. Prepare presentation using sophisticated software packages.
- C3. Make use of different internet resources.
- C4. Carry out necessary graphical, statistical and frequency analyses of different types of data

D. General and transferable skills:

D3. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential-logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video, etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lecture 8-9 Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Lecture 10-11 Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports to extract useful information

Lecture 12-13 Computer programming language

Assignment 6: Programming using Visual Basic 6

Solving real problems using a computer language

Lecture 14-15 Photo manipulation and enhancement using the photoshop

Assignment 7: Using the Photoshop program

Practicing on manipulation and enhancing of images

Lectures 16 Introduction to Data frequency analysis using Fourier analysis and Fourier transformation searching for periodicities

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous		10%

	Assessment	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Course Coordinator		Head of Department				
Name	Prof. Mohamed M. El-Awady	Prof. Elsayed Taha Rizq				
Name (Arabic)	أ.د.محمد العوضي	أ.د. السيد طه رزق				
Signature						
Date	/9/2014	/9/2014				

Course title	Intended learning outcomes ILOs									
		KU					I	P	T	
	A1	A2	A3	A4	A5	A6	A7	B1	C 1	D1
Methods for graphical representations, Data analysis and Data modeling										
Assignment 1 : Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Statistical Data analysis	٧	٧	٧	٧	٧	٧	٧	٧		
Assignment 2 : Using Application programs	٧	٧	٧	٧	٧	٧	٧	٧		
Creating powerful presentation	٧	٧	٧	٧	٧	٧	٧			
Assignment 3 : Using PowerPoint program		٧	٧	٧	٧	٧	٧		٧	
Use of internet capabilities and searching engines		٧	٧	٧	٧	٧	٧			٧
Assignment 4: Using the Internet	٧	٧	٧	٧	٧	٧	٧			٧
Creating Data Base and related Queries and Reports	٧	٧	٧	٧	٧	٧	٧			
Assignment 5: Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Computer programming language	٧	٧	٧	٧	٧	٧	٧			
Assignment 6: Programming using Visual Basic 6	٧	٧	٧	٧	٧	٧	٧			
Photo manipulation and enhancement using the photoshop	٧	٧	٧	٧	٧	٧	٧			
Assignment 7: Using the Photoshop program	٧	٧	٧	٧	٧	٧	٧			

M.Sc. Programme of Comparative Anatomy of Vertebrates

Academic Reference Standards for M.Sc. degree in Comparative Anatomy of Vertebrates

1. Academic Standards:

The Academic Reference Standards (ARS) for the award of the M.Sc. degree in Comparative Anatomy of Vertebrates are designed to provide students with the knowledge and skills for proficiency in Zoological Science. The National Authority for Quality Assurance and Accreditation of Education (NAQAAE) for M.Sc. degree is used as the core of this academic standards to determine appropriate content and process skills for students. The relationship between science, our environment, and our everyday world is crucial to each student's success and should be emphasized. Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content.

The following Specific ARS for the M.Sc. in Zoology were approved by the Council of the Faculty of Science, Tanta University.

1.1. Graduate Attributes:

Graduate of M.Sc. Program in Comparative Anatomy of Vertebrates Should be Able to:

- 1.1.1-Apply the knowledge of Zoological Science and their related disciplines, applications and tools in solving scientific problems.
- 1.1.2-Apply the analytical methods in Zoology research.
- 1.1.3-Apply specialized knowledge in Zoology combined with related knowledge in professional practice.
- 1.1.4- Show awareness of the ongoing problems in the minor specialization.
- 1.1.5- Use appropriate technological resources to serve and improve the professional practice.
- 1.1.6- Communicate effectively and lead teams.
- 1.1.7- Show awareness of his/her role in community development and preservation of the environment in light of global and local changes.
- 1.1.8- Share in multidisciplinary team work and be flexible for adaptation and working under contradictory conditions.
- 1.1.9- Hold professional values that maintain individuality, positive thinking and self-confidence.
- 1.1.10- Collect, summarize and present data, undertake professional and ethical responsibilities.

1.2. Knowledge and Understanding:

Students analyze how scientific knowledge is developed and will understand important features of the process of scientific inquiry. By the end of the program, the M.Sc. holder must have precise knowledge in different areas and research fields in zoology and be able to:

1.2.1- Investigate the advanced knowledge and training in one or more areas of Zoology with more specific subject-related skills in one of these areas.

- 1.2.2- Explain the theoretical and practical knowledge of various Zoological aspects, their knowledge which are required for professional activities in the field of Zoology research career.
- 1.2.3- Demonstrate a comprehensive understanding of essential literature in their specific research area.
- 1.2.4- Define the scientific progress in the area of his/her minor specialty.
- 1.2.5-Write on the routine applied for interpreting and analyzing Zoological information.
- 1.2. 6- Illustrate the principles of ethics in scientific studies and research.

1.3. Intellectual Skills

Students will apply the following to inquiry intellectual practices:

- 1.3.1- Criticize approach to any Zoological and environmental problems which they may encounter.
- 1.3.2- Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.3.3-Perform perfectly the modern professional practice in the minor specialty of Zoology.
- 1.3.4- Apply a significant information gathering and analytical skills in an area of applied research in Zoology.
- 1.3.5- Develop lines of argument and appropriate judgments in accordance with the scientific theories and concepts.
- 1.3.6- Create plan to develop performance in the minor area of specialty.
- 1.3.7- Apply appropriate physical principles to create and analyze system components
- 1.3.8- Evaluate the risks in professional practices in the minor area of specialty.
- 1.3.9-Analyze and estimate knowledge in the area of minor specialty and use it in solving research problem.
- 1.3.10- Reconstruct the available resources effectively and develop them.
- 1.3.11- Differentiate between subject-related theories and assess their concepts and principles.
- 1.3.12- Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.3.13- Construct several related integrated information to confirm, make evidence and test hypothesis.
- 1.3.14- Use theories of zoology to interpret results.

1.4. Professional and practical skills:

Students will be encountered important features of the process of scientific inquiry and by the end of the program, the M.Sc. holder must be able to:

- 1.4.1- Perform the skills of analytical biological information in selecting the appropriate biological instrumentations and laboratory techniques in various fields of Zoology.
- 1.4.2- Plane, design, conduct and report on the investigated data, using appropriate techniques and considering scientific guidance.
- 1.4.3- Store sufficient idea for methods of collection, classification, preservation and analysis of animal samples.
- 1.4.4- Apply techniques and tools considering scientific ethics.
- 1.4.5- Perform research in Zoological sciences and demonstrate proficiency in the techniques and methods appropriate for their research area in minor specialty.

- 1.4.6-Design and conduct a research project and be able to present the results to an appropriate forum both in oral and in written format.
- 1.4.7- Proficiently teach the laboratory sections in Zoology as well as one specialty area and able to compete positively for jobs in academic and private area.
- 1.4.8- Collect evidences to test and confirm the scientific hypothesis in the field of minor specialty.
- 1.4.9- Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 1.4.10- Use the national standards for laboratory equipment which are essential for practical work.

1.5. General and Transferable Skills.

By the end of the program, the M.Sc. holder must be able to:

- 1.5.1- Oral and written communicate and exchange the information effectively through seminars and discussion meetings.
- 1.5.2- Effectively use information and communication technology and identify roles and responsibilities, and their performing manner.
- 1.5.3- Think independently, set tasks and solve problems on scientific basis.
- 1.5.4- Work in group effectively, manage time and communicate with others positively.
- 1.5.1- Consider community linked problems, ethics and traditions and acquire self- and long life—learning.
- 1.5.5- Deal with scientific data in Arabic, English or other languages.
- 1.5.6- Apply effectively scientific models, systems, , information technology, and tools and deal with scientific patents, also, exhibit the sense of beauty and neatness.
- 1.5.7- Fit the ethics of scientific research.

2- Curriculum Structure and Contents:

- 7.1- Program duration: At least two years for the thesis preparation.
- 7.2- Program Structure: Thesis in different branches of zoology.

Thesis

The thesis of M.Sc. program in Zoology is a formal written document representing sustained research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods courses will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis will be reviewed and approved by the candidate's supervising professor and external academic review committee.

a. The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.

- Materials and methods.
- Results
- Discussion and conclusions
- References.

b. Language of the thesis:

The thesis must be written in English language accompanied by a summary in Arabic.

c. Formation of Examiners Committees

A committee is selected by zoology Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

3-Program Admission Requirements:

An applicant for admission to the M.Sc. program in zoology should hold an B.Sc. degree in zoology with a minimum grade of (Good = 70%)

4- Program Student Evaluation

- Courses of pre-master academic year
- At least one published paper
- Written thesis
- Public hearing
- Defense exam

A. Program Specification

Program Title	MSc-Comparative Anatomy of Vertebrates
Award	Master of Comparative Anatomy of Vertebrates
Parent Department	Zoology Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Prof. Nabil El Fiky
External Evaluator(s)	Applied
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Other Reference Points	Bioscience, Egyptian Code of Assessment
Date of Delivery	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

- To develop the knowledge of population change as brought about by mechanism of organic evolution, the major phylogenetic and comparative aspects of anatomy, physiology, reproduction and embryology of vertebrate phyla of the animal
- To familiarize with the basic systematic methodologies and able to readily identify many common species of Egypt.
- To develop a critical analysis on the phylogenetic relationship among major vertebrate groups incorporating both traditional morphologically based hypothesis as well as recent molecular hypothesis.
- To provide arrange of practical skills, ecological and systematic methods, research techniques and advanced knowledge appropriate to employment in a wide range of contexts.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should acquire the ability to:

A1. describe the evolutionary processes responsible for biological diversity, explain the phylogenetic relationships among the major taxa of life and

- provide illustrative examples to provide a foundation for further studies in biology.
- A2. describe the anatomical basis for nutrition, osmoregulation, excretion, digestion, reproduction, development, locomotion and sensory interactions with the environment in a phylogenetic context.
- **A3.** describe the process of gamete production, fertilization, cleavage, formation of germ layers and the mechanisms of embryo development of vertebrate groups.

B. Intellectual skills:

They will also acquire the ability to:

- B1. formulate a hypothesis, plan and execute laboratory investigation or development work, evaluate the outcomes and draw valid conclusions.
- B2. plan and write original essay evaluating published research articles and addressing issues of importance selected from various topics covered by the degree.
- B3. analyse, synthesise and assimilate diverse information in a critical manner.
- B4. construct reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.

C. Professional and practical skills:

- C1. identify and describe the differences between individual within different vertebrate taxa.
- C2. apply basic knowledge and techniques of experimental embryology on the laboratory models, the toad and chicken .
- C3. write a scientific report and analysing data concerning the variations among examined vertebrates.

D. General and transferable skills:

- D1. Apply numerical and IT skills with confidence and accuracy.
- D2. Take responsibility for self-managed learning and personal/professional development.
- D3. Able to work with a strong sense of direction and creativity.
- D4. Communicate effectively and professionally by written and graphical form.
- D5. Collect, record, analyse and interrpt data from a range of sources.

3. Academic standards

3.A External references for standards (Benchmarks):

Academic reference standards(ARS)

4. Curriculum Structure and contents:

4.A	Programme durationr: one y	rogramme durationr: one year									
											
4.B	Programme structure										
4.B.1	Number of contact hours	per Week:									
		Lectures	6	Lab.	6						
	Overall Contact hours	Lectures	10	Lab.	9						
4.B.2	Number of contact hours	Compulsory	6	Optional	6						
4.B.3	Thesis										

5. Programme courses

Yea	r Co	ourse Title	Lec.	Prac.	Program ILOs Covered
	ee of t	the first five courses are y:			
1	Histo	ology			
2		parative Anatomy of ebrates	2	2	KU, I, P,T
3	verte	brate Embryology	2	2	KU, I, P,T
4	Vert	ebrate Evolution	2	2	KU, I, P,T
5	Biost	atistics	1	1	KU, I,P, T
6	Comp	puter	1	1	KU, I,P, T

6. Programme admission requirements

Arrangements for admission are based on the national guidelines with no Faculty control on the number of newly enrolled students.

Candidates must satisfy the general admission requirements of the University, Faculty in Biology and also hold one of the following:

The applicants must have obtained a Bachelor's degree, or its equivalent, in Zoology with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by a research project, i.e. the Master thesis, by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	applied	
5. student questionnaire	applied	A questionnaire applied on courses individually

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place

Name	Signature	Date
Programme Coordinator:		
Prof. Nabil Kamal Elfiky		/9/2014
(أ. د. نبيل كمال الفقى)		
Head of Quality Assurance Unit:		
Prof. Hoda Salem		/9/2014
(أ. د. هدى سالم)		
Dean of the Faculty:		
Prof. Tarek Fayed		/9/2014
(أ. د. طارق فايد)		

M.Sc. Courses: Programme Matrix
Programme Title: Master of Science (M.Sc.) degree in Expermintal Zoology

Programm	ie '	litl	e: N	Tast	er o															
Programm		Academic standards intended learning outcomes ILOs																		
intended	\vdash		T.	ΚU						I				I)			Т		
learning			Г	LU						1				1				1		
outcomes ILOs	A	Α	A	A	A	A	В	В	В	В	В	В	В	C	C	D	D	D	D	D
	1	2	3	4	5	6	1	2	3	4	5	6	7	1	2	1	2	3	4	5
A1. describe	٧																			
the																				
evolutionary																				
processes																				
responsible																				
for biological																				
diversity																				
A2. describe																				
the																				
anatomical																				
basis for																				
nutrition																				
A3. describe																				
the process of																				
gamete																				
production																				
B1. formu							٧													
late a																				
hypothesis																				
B2. plan																				
and write																				
original essay																				
evaluating																				
published																				
research																				
articles																				
B3. analys							٧													
e, synthesise																				
and assimilate																				
diverse																				
information in																				
a critical																				
manner.																				
B4. constr											٧									
uct reasoned																				
arguments to																				
support a																				
position on																				
the ethical																				
C1. identi								٧												
fy and																				
describe the																				
differences																				
between																				
individual																				
within																				
different																				
vertebrate																				
	L	l	l	1	l	l	l	10	l	l	l	l	l	l		<u> </u>	<u> </u>	<u> </u>		

taxa.	l												
C2. apply										٧			
basic										٠			
knowledge													
and													
techniques of													
experimental													
embryology													
on the													
laboratory													
models, the													
toad and													
chicken .													
C3. write										٧			
a scientific													
report and													
analysing data													
concerning													
the variations													
among													
examined													
vertebrates.													
D1. apply											٧		
numerical and													
IT skills with													
confidence													
and accuracy.													
D2. take											٧		
responsibility													
for self-													
managed													
learning and													
personal/prof													
essional													
development.													
D3. the													
capacity to													
work with a													
strong sense													
of direction													
and creativity.													
D4. comm											٧		
unicate													
effectively													
and													
professionally													
by written and													
graphical													
form.													
D5. collec	1											٧	
t, record,												•	
analyse and													
interpret data													
from a range													
of sources.	<u> </u>												

Course - Programme ILOs Matrix (Curriculum Map)

Course		Intended learning outcomes ILOs													
title		KU	ſ		I				P			T			
	A	A	A	В	В	В	В	C	C	C	D	D	D	D	D
	1	2	3	1	2	3	4	1	2	3	1	2	3	4	5
Histology						٧	٧								
Comparative		٧				٧	٧								
Anatomy of															
vertebrate															
vertebrate						٧	٧		٧						
Embryology															
Vertebrate	٧		٧			٧	٧	٧							
Evolution															
Biostatistics				V		٧	٧			٧					1
Computer					V					٧	٧				
thesis				٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

Course Title	Histology							
Course Code								
Academic Year	2014/2015	2014/2015						
Coordinator	Prof. Ahlam A. Ab	ou Shafey						
Other Staff								
Level	Graduate-MSc							
Semester	One acdemic year							
Pre-Requisite								
Course Delivery	Lecture	28 x 2h lectures						
	Practical	28 x 2h practicals						
Parent	Zoology Departme	ent						
Department								
Date of	September, 2014							
Approval								

This module is in two halves:

- Provide students with adequate theoretical knowledge and professional skills in systemic animal tissues.
- Illustrate the advanced techniques in studying tissues.
- Create the ability to read and comment on electron microcopy observation.
- Acquire the ability to continuing research enhancement in the field of histology.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

A4. Describe the normal histological features(Im) and ultra-structure(tem) of various body systems (digestive, endocrine respiratory, urinary, circulatory.

- A5. describe and distinguish structural features of histological organs, regions and cell types present in each system and relate the structural variations to differences in organ function.
- A6. explain the physiological, ultrastructural and specialized function of different cell types in different organ of the body

B. Intellectual skills:

They will also acquire the ability to

B2.correlate between histological structure, ultra-structure and function of different tissues and organs of all studied mammalian systems.

C. Professional and practical skills:

- C4. analyse, summarise and integrate information critically from a variety of media.
- C5. recognize & distinguich between different organs in histological slides seen under the microscope.
- C6. correlate the organs in each system with their function.

D. General and transferable skills:

- D4.use the internet and other electronic sources as a source of information.
- D5.develop team work skills and conduct lab investigation in a safe and ethical manner.
- D6.communicate effectively with the colleagues as well as the employes and staff members.

3. Contents

Part – 2	Histology
Lectures 1,2	Circulatory system (blood vascular and lymphatic systems). Blood vascular system, histological structure of heart wall, and general structure of blood vessel wall.
Lectures 3,4	Arteries and veins; (large, medium-sized and small), blood capillaries, sinusoids and a-v anastomosis.
Lectures 5,6	Endocrine system, introduction, distribution of endocrine glands, 1) pituitary gland: a- adenohypophysis, histological structure and explain cell types of sth, lth, tsh, gth, acth and msh cells, sites and function.
Lectures 7,8	B- neurohypophysis of pituitary gland (pars nervosa), types of its nerve fibres and cells. 2) thyroid gland (lm&tem): follicular cells, parafollicular cells and interfollicular cells, and 3)

parathyroid gland (chief and oxyphil cells), sites and functions.

- Lectures 9,10 4) Adrenal glands (Im & tem):a- adrenal cortex (zona glomerulosa, zona fasciculata and zona reticularis). B- adrenal medulla (types of chromaffin cells:adrenaline and nor adrenaline cells.
- Lectures 11,12 Integument; skin and appendages. Types, sites and structure of skin, hairs, hair follicles and nails.
- Lectures 13,14 Color of skin, skin glands; sweat and sebaceous glands.
- Lectures 15,16 Digestive system, oral cavity; lip, tongue, palate and pharynx.
- Lectures 17,18 Alimentary tract; esophagus, stomach, small and large intestine.
- Lectures 19,20 Digestive glands; salivary glands, liver and pancreas.
- Lectures 21,22 Urinary system(Im & tem); kidney, nephron, collecting tubules, and blood-renal barrier.
- Lectures 23,24 Juxta-glomerular apparatus, ureter, urinary bladders and urethra.
- Lectures 25,26 Respiratory system:1)conducting portion: nasal cavity (naso-pharynx and larynx), trachea and respiratory epithelium.
- Lectures 27,28 Lung, Im & tem (bronchi & terminal bronchiols), 2)respiratory portion (respiratory bronchioles, alveolar duct & sacs, alveoli, pneumocytes (type i & ii), alveolar macrophages and blood-air barrier.

Weeks 29.30 Assessment

Weeks 31,32

4. Teaching and Learning Methods

- Lectures.
- Practical Classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

*KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Course notes and Laboratory manual authorized by the Council of Department of Zoology.

Essential Books:

7. Facilities required for teaching and learning

- Projectors; Video and Overhead Projectors.
- Computer Presentations and Writing Boards.
- Microscopes; Compound and Stereoscopic.
- Museum Models.
- Scientific films and CDs.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Ahlam A. Abou Shafey	Prof. Nabil Kamal El Fiky
Name (Arabic)	أ. د. أحلام السيد أبو شافعي	أ. د. نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs									
	KU			I	P				T	
	A1	A2	A3	B 1	C1	C2	C3	D 1	D2	D3
Circulatory system (blood vascular and lymphatic systems)	٧	٧	٧							
Arteries and veins	٧	٧	٧							
Endocrine system, introduction	٧	٧	٧							
B- neurohypophysis of pituitary gland (pars nervosa)	٧	٧	٧							
4) Adrenal glands (Im & tem	٧	٧	٧							
Integument	٧	٧	٧							
Color of skin, skin glands	٧	٧	٧							
Digestive system, oral cavity	٧	٧	٧							
Alimentary tract; esophagus, stomach, small and large intestine.	V	٧	٧							
Digestive glands; salivary glands, liver and pancreas.	٧	٧	٧	٧						
Urinary system(Im & tem)	٧	٧	٧	٧						
Juxta-glomerular apparatus, ureter, urinary bladders and urethra.	٧	٧	٧	√						
Respiratory system:1)conducting portion: nasal cavity (naso-pharynx and larynx), trachea and respiratory epithelium.	V	V	V	√						
Lung, Im & tem (bronchi & terminal bronchiols), 2)respiratory portion (respiratory bronchioles, alveolar duct & sacs, alveoli, pneumocytes (type i & ii),	V	V	V	√						

alveolar macrophages blood-air barrier.	and								
Practical part				٧	٧	٧	٧	٧	٧

Course Title	Comparative Anatomy	of vertebrates			
Course Code					
Academic Year	2014/2015				
Coordinator	Prof. Seham Salem				
Other Staff	Prof. Fouad Afifi, , Prof. Abeer Alm El Dean				
Semester	One acdemic year				
Level	Graduate-MSc				
Pre-Requisite	Lectures	28 x 2h lectures			
Course Delivery	practicals	28 x 2h practicals			
Parent	Zoology Department				
Department					
Date of Approval	September, 2014				

The course is constructed to develop understanding of the comparative structure and function of the major organ systems in the vertebrate classes, with a focus on the integumentary, digestive, circulatory and skeletal vertebrate systems and special senses and the endocrine systems. This focus will provide a contemporary comparative approach to resolve the structural and functional basis of vertebrate behaviour and demonstrate how vertebrates recognize and initiate response to challenges set by their natural environments.

2. Intended Learning outcomes

A. Knowledge and understanding:

On successful completion of this module students should be able to:

- A1. show the significance of the structure and function of the main organ systems in different vertebrate classes and demonstrate an understanding of the major evolutionary changes that have occurred in these systems
- A2. identify the structural-functional basis of vertebrate behaviour and explain how vertebrates recognize and initiate response to challenges set by their environments

B. Intellectual skills:

- B1. analyse the structure of the vertebrate body in relation to function in comparative way and at the micro- and macro-levels.
- B2. analyse vertebrate body structure in an evolutionary approach.

C. Professional and practical skills:

- C1. tackle basic skills of vertebrate dissection and some basic histological procedures.
- C2. prepare vertebrate skeleton of representative vertebrates.

D. General and transferable skills:

D1.use IT in self-learning

3. Contents

Lecture – 1,2	Integumemtary System: Introduction: Terminology, Deravitives of the germ layers, classification of chordate.
Lecture – 3,4	Integumantry system: Skin in chordate classes, protochordates, fishes, reptilia, birds, mammals, glands in the mammalian skin.
Lecture – 4,5	Exoskeleton of cyclostomes, fishes placoid scales, cosmoid, ganoid, cycloid, cetenoid scales, development of cycloid scales, exoskeleton of the fins.
Lecture – 5,6	Exoskeleton of Amphibia, Reptilia: Development of horny scales. Exoskeleton of birds: types of feathers, development of feathers.
Lecture – 7,8	Exoskeleton of mammals: hairs, structure and development of hairs, teeth, structure and development of tooth, replacement and types of teeth among vertebrates.
Lecture – 9,10	Skeletal system : Comparative anatomy of skull: cyclostomes, gnathostomes, elasmobranch, development of chondrocranium, development of splanchnocranium. Skull of teleost fishes, primitive tetrapod skull.
Lecture – 11,12	Replacing bones in the cranium, replacing bones in the sense capsules, replacing bones in the gill arches.
Lecture – 13,14	Dermal bones in the Tetrapod skull: Dermatocranium,
	skull of primitive, modern amphibians.
Lecture – 15,16	Skull of reptilia, skull of birds.
Lecture – 17,18	Mammalian skull, vertebral column in chordata.
Lecture – 19,20	Development of vertebra, vertebra in different classes.
Lecture – 21, 22	Circulatory system: Arterial system, venous system.

Lecture – 23, 24 Excretory system and genital ducts.

Lecture – 25,26 The nervous system: Comparative anatomy of the brain. The

digestive tract: an overview.

Lectures 27,28 Revision and discussion

Assessment

Practical part Has the same topics related to the above subjects

4. Teaching and Learning Methods

- Lectures
- Practical classes

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

Course notes and Laboratory manual authorized by the Council of Department of Zoology.

Essential Books:

George C. Kent and Robert K. Carr (2001): Comparative Anatomy of the Vertebrates, 9th Ed. McGraw Hill, Biological Science Series.

Linzey, S. (2001): Vertebrate Biology, McGraw-Hill, ISBN 0-697-36387-2

Recommended Books:

Pough, F.H., Janis, C.M & Heiser, J.B. (2001) *Vertebrate life.* 6th edition. London: Prentice-Hall International.

Walker W.F & Liem K. F (1994) Functional anatomy of the vertebrates : an evolutionary perspective 2nd edition. London: Saunders College Publishing.

Kardong KV (2002) Vertebrates - Comparative Anatomy, Function, Evolution 3rd edition. London, Mc Graw Hill

Web sites:

7. Facilities required for teaching and learning

- Projectors: Video.
- Computer Presentations and Writing Boards
- Microscopes; Compound and Stereoscopic.
- Microscopic Histological Preparations.
- Preserved Representative Models.
- Live Vertebrate Specimens.
- Museum, Library

_

	Course Coordinator	Head of Department
Name	Prof. Fouad Afifi	Prof. Nabil Kamal El Fiky
Name (Arabic)	(أ. د. فؤاد عفيفي)	أ. د. نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title	Ir	tende	d lear	ning o		Os	
	KU		I]	?	T
	A1	A2	B 1	B2	C1	C2	D1
Integumemtary System	٧	٧	٧	٧			
Integumantry system: Skin in chordate classes, protochordates	٧	٧	٧	٧			
Exoskeleton of cyclostomes	٧	٧	٧	٧			
Exoskeleton of Amphibia	٧	٧	٧	٧			
Exoskeleton of mammals	٧	٧	٧	٧			
Skeletal system	٧	٧	٧	٧			
Replacing bones in the cranium, replacing bones in the sense capsules	٧	٧	٧	٧			
Dermal bones in the Tetrapod skull	٧	٧	٧	٧			
Skull of reptilia, skull of birds.	٧	٧	٧	٧			
Mammalian skull, vertebral column in chordata.	٧	٧	٧	٧			
Development of vertebra, vertebra in different classes.	٧	٧	٧	٧			
Circulatory system: Arterial system, venous system.	٧	٧	٧	٧			
Excretory system and genital ducts.	٧	٧	٧	٧			
The nervous system: Comparative anatomy of the brain. The digestive tract: an overview.	٧	٧	٧	٧			
Revision and discussion	٧	٧	٧	٧			
Practical part					٧	٧	٧

Course Title	Vertebrate Emb	ryology		
Course Code				
Academic Year	2014/2015			
Coordinator	Prof. Nabil El Fik	у		
Other Staff				
Level	Master's Degree	(Experimental Zoology)		
Semester	One continuous academic year			
Pre-Requisite				
Course Delivery	Lecture	28 2h lectures		
	Practical	28 2h practicals		
Parent	Zoology Departm	ent		
Department				
Date of	September, 2014			
Approval				

This course provides students with the principles of embryology with emphasis on current experimental approaches utilized in research of normal and abnormal development of the mammalian embryo.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module, students should be able to:

- A1. Describe the processes of early embryonic development.
- A2. Show the current methodologies for conducting research in the field of embryology.

B. Intellectual skills:

They will also acquire the ability to:

B1. develop critical thinking skills and apply information presented in class to new scientific related problems.

C. Professional and practical skills:

- C1. carry out exercises and demonstrations to emphasize topics covered.
- C2. gain experience with embryos and techniques used to study them.

D. General and transferable skills:

D1. use of information technology in reviewing recent literature and in self-learning.

3. Contents

- Lecture 1,2 Molecular Biology Review; Cell Cycle.
- Lecture 3,4 Cell Cycle Paper Discussion; Sterile Technique and Intro to Moving Eggs/Embryos.

Lecture – 4,5	In Vivo Oocyte Maturation and Fertilization; In Vitro Maturation and Fertilization (IVM/IVF).
Lecture – 5,6	In Vitro Maturation/Fertilization Paper Discussion; Oocyte Collection and In Vitro Maturation.
Lecture – 7,8	In Vitro Culture of Embryos; IVP Paper Discussion.
Lecture – 9,10	Preimplantation Development; In Vitro Fertilization, Embryo culture, Grading and Freezing.
Lecture – 11,12	Artificial Reproductive Technologies; ART Paper Discussion.
Lecture – 13,14	Maternal Zygotic Transition; Embryo RNA Isolation and Reverse Transcription.
Lecture - 15,16	Epigenetics and Imprinting.
Lecture - 17,18	Epigenetics and Imprinting; Epigenetics Paper Discussion.
Lecture - 19,20	Gene detection by PCR; Sex Determination.
Lecture – 21, 22	Germ Cells and Gametogenesis; Gel Electrophoresis of PCR products/introduction to cloning DNA.
Lecture – 23, 24	Transgenesis; Pronuclear Microinjection.
Lecture – 25,26	Nuclear Transfer.
Lectures 27,28	Revision and discussion
Accecement	

Assessment

Practical part Has related subjects to those shown above

4. Teaching and Learning Methods

- Lectures.
- Practical classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written		3 Hour	The 16 th	60%	
Examination	KU, I	Examination	Week	00%	
Mid term	VII I T	1 hour	1 st Term	10%	
Assessment	KU, I, T	Examination	Final	10%	
Practical	Р	2 Hour	The 15 th	30%	
Examination	P	Examination	Week	30%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Handouts.

Essential Books:

- Developmental Biology. Scott F. Gilbert. Sixth Edition.
- The Developing Human: Clinically Oriented Embryology. Keith L. Moore. Fourth Edition.
- Handbook of In Vitro Fertilization. Alan O. Trounson and David K. Gardner. Second Edition.
- Clinical Embryology: A Color Atlas and Text. Murray Brookes and Anthony Zietman.
- An Atlas of Preimplantation Genetic Diagnosis. Yury Verlinsky and Anver Kuliev.
- A Laboratory Guide to the Mammalian Embryo. David K. Gardner, Michelle Lane, and Andrew J. Watson.

7. Facilities required for teaching and learning

- Projectors: video and overhead.
- Analytical balance; waterbaths; incubators.
- Traditional laboratory glassware and plasticware.
- Animal specimens; representative slides.
- Library.

	Course Coordinator	Head of Department
Name	Prof. Nabil Kamal El Fiky	Prof. Nabil Kamal El Fiky
Name (Arabic)	أ. د. نبيل كمال الفقى	أ. د. نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title		Intended learning outcomes ILOs								
	KU		I		P					
	A1	A2	B1	C1	C2	D 1				
Molecular Biology Review; Cell Cycle.	٧	٧								
Cell Cycle Paper Discussion; Sterile Technique	٧	٧								
and Intro to Moving Eggs/Embryos.										
In Vivo Oocyte Maturation and Fertilization; In	٧	٧								
Vitro Maturation and Fertilization (IVM/IVF).										
In Vitro Maturation/Fertilization Paper	٧	٧	٧							
Discussion; Oocyte Collection and In Vitro Maturation.										
In Vitro Culture of Embryos; IVP Paper Discussion.	٧	٧	٧							
Preimplantation Development; In Vitro	٧	٧								
Fertilization, Embryo culture, Grading and										
Freezing.										
Artificial Reproductive Technologies; ART Paper	٧	٧								
Discussion.										
Maternal Zygotic Transition; Embryo RNA	٧	٧								
Isolation and Reverse Transcription.										
Epigenetics and Imprinting.	٧	٧								
Epigenetics and Imprinting; Epigenetics Paper	٧	٧	٧							
Discussion.										
Gene detection by PCR; Sex Determination.	٧	٧								
Germ Cells and Gametogenesis; Gel	٧	٧								
Electrophoresis of PCR products/introduction to										
cloning DNA.										
Transgenesis; Pronuclear Microinjection.	٧	٧								
Nuclear Transfer.	٧	٧								
Molecular Biology Review; Cell Cycle.	٧	٧								
Revision and discussion			٧							
Practical part	٧	٧	٧	٧	٧	٧				

Course Title	Vertebrate Evolut	on			
Course Code					
Academic Year	2014/2015				
Coordinator	Prof. Nabil Elfiky				
Other Staff					
Level	Master's Degree (I	Experimental Zoology)			
Semester	One academic year				
Pre-Requisite					
Course Delivery	Lecture	28 2h lectures			
	Practical	28 2h practicals			
Parent	Zoology Departme	nt			
Department					
Date of	September, 2014				
Approval					

The primary objective of organic evolution course is to understand the origin of animal species and how animals are adapted to its environment. The course is of two parts, the first one is concerned with the outstanding on the different evidences of organic evolution as well as the theories of evolution in addition to patterns of adaptation met with in animal kind. The second part of course is concerned with the evolution and radiation of different vertebrate groups from their ancestors through family trees.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module, students should be able to:

- A1. Describe the evidences which support theories of organic evolution.
- A2. Show the mechanisms and patterns of adaptation met with in different animal species.
- A3. Explain the radiation and evolution of animal species from their ancestors.
- A4. Give account on the phylogenetic family trees of different vertebrate classes.
- A5. Describe the evolutionary relationships that link animal species.

B. Intellectual skills:

They will also acquire the ability to:

- B1. develop critical thinking skills and apply information presented in class to new scientific related problems.
- B2. distinguish the evolutionary relationships that link animal species.

C. Professional and practical skills:

C3. carry out exercises and demonstrations to emphasize topics covered.

D. General and transferable skills:

D1.use of information technology in reviewing recent literature and in selflearning.

3. Contents	
Lecture 1	Introduction to organic evolution and course specification.
Lecture 2	Evidence derived from comparative anatomy analogous homologous structure , vestigal organs.
Lecture 3	Evidence derived from the field of Embryology, Theory of recapitulation, Biogenetic law
Lecture 4	Evidence derived from the field of physiology, Evidence derived from the field of Taxonomy
Lecture 5	Evidence derived from Palaeontology, Types of rocks, different kinds of fossils, Geological time chart
Lecture 6	Evolution of horse
Lecture 7	Evidence derived from geographic distribution and factors regulating distribution – Zoogeographical realms
Lecture 8	Lamarkian theory of evolution . Darwin's theory of Natural selection and its fundamental principles $ \\$
Lecture 9	Devries mutation theory , types of mution
Lecture 10	What is adaptation, Physiological and protective adaptations
Lecture 11	Structural adaptations, adaptation and evolution
Lecture 12	Animal association adaptation
Lecture 13	Regional differentiation of chordate animals homology concept
Lecture 1	Vertebrate pedigree, Hemi, uro and cephalochordate
Lecture 2	Invertebrate phylogeny, Echinoderm affinities
Lecture 3	Chordate phylogeny
Lecture 4	Geological record, vertebrate classification
Lecture 5	Evolution and radiation of jawless vertebrates (Ostracorderms, Cyclostomata)
Lecture 6	Evolution and radiation of elasmobranchiomorphs
Lecture 7	Evolution and radiation of Osteichthyes

Lecture 8 Evolution and radiation of Amphibian

Lecture 9 Evolution and radiation of archosaurs (archioreptiles)

Lecture 10 Evolution and radiation of ruling reptilies

Lecture 12 Evolution and radiation of Birds

Lecture 13 Evolution and radiation of Mammalia

Lecture 14 Evolution and radiation of Placentalia

4. Teaching and Learning Methods

- Lectures.
- Practical classes.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written	KU, I	3 Hour Examination		60%
Examination	KU, I	5 Hour Examination		00%
Practical	D	2 Hour Examination		40%
Examination	P	Z HOUI EXAMINIALION		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Handouts.

Essential Books:

7. Facilities required for teaching and learning

- Projectors: video and overhead.
- Analytical balance; water baths; incubators.
- Traditional laboratory glassware and plastic ware.
- Animal specimens; representative slides.

- Library.

	Course Coordinator	Head of Department
Name	Prof. Nabil Kamal El	Prof. Nabil Kamal El
Name	Fiky	Fiky
Name (Arabic)	أ. د. نبيل كمال الفقى	أ. د. نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course Title	Biostatistics					
Course Code	23094					
Academic Year	2014/2015					
Coordinator	Prof. Abd-Elmonei	Prof. Abd-Elmoneim Anwar Mohamed				
Other staff						
Level	Preparatory level for MSc					
Semester	Continuous academic year					
Pre-Requisite	B. Sc. Zoology					
Course delivery	Lecture	28 x 1h lectures				
	Practical	-				
Parent	Mathematics Depa	rtment				
Department						
Date of	September, 2014					
Approval						

This module aims to provide M. Sc. students in biology with basic concepts of study design and data analysis suitable for laboratory and field research, and to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific biological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of this course the students should be able to:

- A21. raise students' consciousness concerning basic statistical issues such as statistical measures for data description; statistical estimation; correlations and testing hypothesis.
- A22. understand the basic principles of study design.
- A23. describe the types of variables that are used in biological research.
- A24. appreciate the role of sampling variation, how to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B17. carry out confidently simple essential statistical methods in biological research and to interpret results.
- B18. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B19. summarise data using graphical and tabular data.
- B20. interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C13. select and apply appropriate basic statistical methods for analysis of data.
- C14. use GraphPad package in data analysis.
- C15. tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D16. write report including graphical material.
- D17. present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D18. use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

- Lectures 1 Introduction: Variables and distributions. Lectures 2-3 Summarizing data. Lectures 4-5 Sampling variability of a mean. Lectures 6-7 Analysis of quantitative data: Comparing means: comparing two samples. Lectures 8-9 ANOVA: Comparing more than two samples. Lecture 10 Examination. Lectures 11-12 Sampling variability of proportions. Lectures 13-14 Analysis of categorical data; comparing two proportions Regression and correlation. Lectures 15-16 Lectures 17-18 Comparing correlations and regression. Multiple regressions. Lectures 19-20 Regression and correlation: Computer applications. Lectures 21-22 Comparing distribution: Computer applications. Lectures 23-24 Comparing means: Computer applications. Lectures 25-26 Comparing variances: Computer applications. Lectures 27-28 Design of experiments: The null hypothesis, statistical significance and rejecting the null hypothesis. Lectures 29-30 Revision
 - 2 Assessment

Weeks 31, 32

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.
- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 16 th Week	90%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill.

Recommended books

- Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
- Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Abd-Elmoneim A. Mohamed	Prof Qadry Zakaria
Name (Arabic)	أ. د. عبد المنعم محمد طعيمه	أ. د. قدری زکریا
Signature		
Date	/9/2014	/9/2014

Course title		Intended learning outcomes ILOs												
		K	U]	[P			T	
	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introduction	٧	٧	٧	٧										
Summarizing data.	٧	٧	٧	٧										
Sampling variability of a mean.	٧	٧	٧	٧										
Analysis of quantitative data	٧	٧	٧	٧										
ANOVA	٧	٧	٧	٧	V	V	V	٧						
Examination.	٧	٧	٧	٧										
Sampling variability of proportions	٧	٧	٧	٧										
Analysis of categorical data	٧	٧	٧	٧		٧								
Regression and correlation.	٧	٧	٧	٧										
Comparing correlations and regression.	٧	٧	٧	٧										
Regression and correlation	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing distribution	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing means	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing variances	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧

Course Title	Computer				
Course Code	1617				
Academic Year	2014/2015				
Coordinator	Prof. Mohamed El	-Awady			
Other Staff	Prof. Mahmoud Kamel, Prof. Ahmed El-Shishtawy, Prof.				
	Qadry Zakaria				
Semester	Continuous academic year				
Pre-Requisite					
Course Delivery	Lecture	16 x 1h lectures			
	Practical	16 x 1h practicals			
Parent	Computer Centre				
Department					
Date of Approval	September, 2014				

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- Underpin academic work throughout postgraduate studies.
- Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

Upon successful completion of this course the students should be able to:

- A8. Demonstrate knowledge and understanding of the use of IT in the context of their postgraduate studies.
- A9. Know the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A10. Carry out necessary graphical, statistical and frequency analyses of different types of data.
- A11. Create powerful presentation using sophisticated software packages.
- A12. Make use of different internet resources.
- A13. Solve scientific problems using computer programming.
- A14. Make use of different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

B5.Integrate different application programs to develop effective information analysis and presentation.

C. Professional and practical skills:

C1. Use a number of computer packages to present information.

D. General and transferable skills:

D4. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential-logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV,

and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video,

etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lecture 8-9 Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Lecture 10-11 Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports

to extract useful information

Lecture 12-13 Computer programming language

Assignment 6: Programming using Visual Basic 6 Solving real problems using a computer language

Lecture 14-15 Photo manipulation and enhancement using the photoshop

Assignment 7: Using the Photoshop program

Practicing on manipulation and enhancing of images

Lectures 16 Introduction to Data frequency analysis using Fourier analysis

and Fourier transformation searching for periodicities

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion	
Written Examination	KU, I	1 Hour Examination	Term Final	60%	
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%	
Semester work	Р, Т	Continuous Assessment		10%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

7. Facilities required for teaching and learning

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Co	ourse Coordinator	Head of Department
Name	Prof. Mohamed M. El-Awady	Prof. Elsayed Taha Rezk
Name (Arabic)	أ.د.محمد العوضي	أ.د. السيد طه رزق
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs									
				KU				I	P	T
	A1	A2	A3	A4	A5	A6	A7	B1	C1	D1
Methods for graphical representations, Data analysis and Data modeling										
Assignment 1 : Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Statistical Data analysis	٧	٧	٧	٧	٧	٧	٧	٧		
Assignment 2 : Using Application programs	٧	٧	٧	٧	٧	٧	٧	٧		
Creating powerful presentation	٧	٧	V	٧	V	٧	V			
Assignment 3 : Using PowerPoint program	٧	٧	٧	٧	٧	٧	٧		٧	
Use of internet capabilities and searching engines	٧	٧	٧	٧	٧	٧	٧			٧
Assignment 4: Using the Internet	٧	٧	٧	٧	٧	٧	٧			٧
Creating Data Base and related Queries and Reports	٧	٧	٧	٧	٧	٧	٧			
Assignment 5: Using Application programs	٧	٧	٧	٧	٧	٧	٧			
Computer programming language	٧	٧	٧	٧	٧	٧	٧			
Assignment 6	٧	٧	٧	٧	٧	٧	٧			
Photo manipulation and enhancement using the photoshop	٧	٧	٧	٧	٧	٧	٧			
Assignment 7: Using the Photoshop program	٧	٧	٧	٧	٧	٧	٧			

M. Sc. Programme of Insect Ecology

Academic Reference Standards for M.Sc. degree in Insect Ecology

1. Academic Standards:

The Academic Reference Standards (ARS) for the award of the M.Sc. degree in Insect Ecology are designed to provide students with the knowledge and skills for proficiency in Zoological Science. The National Authority for Quality Assurance and Accreditation of Education (NAQAAE) for M.Sc. degree is used as the core of this academic standards to determine appropriate content and process skills for students. The relationship between science, our environment, and our everyday world is crucial to each student's success and should be emphasized. Science consists of a way of thinking and investigating, and includes a growing body of knowledge about the natural world. To become literate in science, therefore, students need to acquire understandings of both the Characteristics of Science and its Content.

The following Specific ARS for the M.Sc. in Zoology were approved by the Council of the Faculty of Science, Tanta University.

1.1. Graduate Attributes:

Graduate of M.Sc. Program in Insect Ecology Should be Able to:

- 1.1.1-Apply the knowledge of Zoological Science and their related disciplines, applications and tools in solving scientific problems.
- 1.1.2-Apply the analytical methods in Zoology research.
- 1.1.3-Apply specialized knowledge in Zoology combined with related knowledge in professional practice.
- 1.1.4- Show awareness of the ongoing problems in the minor specialization.
- 1.1.5- Use appropriate technological resources to serve and improve the professional practice.
- 1.1.6- Communicate effectively and lead teams.
- 1.1.7- Show awareness of his/her role in community development and preservation of the environment in light of global and local changes.
- 1.1.8- Share in multidisciplinary team work and be flexible for adaptation and working under contradictory conditions.
- 1.1.9- Hold professional values that maintain individuality, positive thinking and self-confidence.
- 1.1.10- Collect, summarize and present data, undertake professional and ethical responsibilities.

1.2. Knowledge and Understanding:

Students analyze how scientific knowledge is developed and will understand important features of the process of scientific inquiry. By the end of the program, the M.Sc. holder must have precise knowledge in different areas and research fields in zoology and be able to:

- 1.2.1- Investigate the advanced knowledge and training in one or more areas of Zoology with more specific subject-related skills in one of these areas.
- 1.2.2- Explain the theoretical and practical knowledge of various Zoological aspects, their knowledge which are required for professional activities in the field of Zoology research career.
- 1.2.3- Demonstrate a comprehensive understanding of essential literature in their specific research area.

- 1.2.4- Define the scientific progress in the area of his/her minor specialty.
- 1.2.5-Write on the routine applied for interpreting and analyzing Zoological information.
- 1.2. 6- Illustrate the principles of ethics in scientific studies and research.

1.3. Intellectual Skills

Students will apply the following to inquiry intellectual practices:

- 1.3.1- Criticize approach to any Zoological and environmental problems which they may encounter.
- 1.3.2- Postulate and deduce mechanisms and procedures to handle scientific problems.
- 1.3.3-Perform perfectly the modern professional practice in the minor specialty of Zoology.
- 1.3.4- Apply a significant information gathering and analytical skills in an area of applied research in Zoology.
- 1.3.5- Develop lines of argument and appropriate judgments in accordance with the scientific theories and concepts.
- 1.3.6- Create plan to develop performance in the minor area of specialty.
- 1.3.7- Apply appropriate physical principles to create and analyze system components
- 1.3.8- Evaluate the risks in professional practices in the minor area of specialty.
- 1.3.9-Analyze and estimate knowledge in the area of minor specialty and use it in solving research problem.
- 1.3.10- Reconstruct the available resources effectively and develop them.
- 1.3.11- Differentiate between subject-related theories and assess their concepts and principles.
- 1.3.12- Analyze, synthesize, assess and interpret qualitatively and quantitatively science relevant data.
- 1.3.13- Construct several related integrated information to confirm, make evidence and test hypothesis.
- 1.3.14- Use theories of zoology to interpret results.

1.4. Professional and practical skills:

Students will be encountered important features of the process of scientific inquiry and by the end of the program, the M.Sc. holder must be able to:

- 1.4.1- Perform the skills of analytical biological information in selecting the appropriate biological instrumentations and laboratory techniques in various fields of Zoology.
- 1.4.2- Plane, design, conduct and report on the investigated data, using appropriate techniques and considering scientific guidance.
- 1.4.3- Store sufficient idea for methods of collection, classification, preservation and analysis of animal samples.
- 1.4.4- Apply techniques and tools considering scientific ethics.
- 1.4.5- Perform research in Zoological sciences and demonstrate proficiency in the techniques and methods appropriate for their research area in minor specialty.
- 1.4.6-Design and conduct a research project and be able to present the results to an appropriate forum both in oral and in written format.

- 1.4.7- Proficiently teach the laboratory sections in Zoology as well as one specialty area and able to compete positively for jobs in academic and private area.
- 1.4.8- Collect evidences to test and confirm the scientific hypothesis in the field of minor specialty.
- 1.4.9- Implant comprehensive physical knowledge and understanding as well as intellectual skills in research tasks.
- 1.4.10- Use the national standards for laboratory equipment which are essential for practical work.

1.5. General and Transferable Skills.

By the end of the program, the M.Sc. holder must be able to:

- 1.5.1- Oral and written communicate and exchange the information effectively through seminars and discussion meetings.
- 1.5.2- Effectively use information and communication technology and identify roles and responsibilities, and their performing manner.
- 1.5.3- Think independently, set tasks and solve problems on scientific basis.
- 1.5.4- Work in group effectively, manage time and communicate with others positively.
- 1.5.1- Consider community linked problems, ethics and traditions and acquire self- and long life—learning.
- 1.5.5- Deal with scientific data in Arabic, English or other languages.
- 1.5.6- Apply effectively scientific models, systems, , information technology, and tools and deal with scientific patents, also, exhibit the sense of beauty and neatness.
- 1.5.7- Fit the ethics of scientific research.

2- Curriculum Structure and Contents:

- Y.1- Program duration: At least two years for the thesis preparation.
- Y.2- Program Structure: Thesis in different branches of zoology.

Thesis

The thesis of M.Sc. program in Zoology is a formal written document representing sustained research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods courses will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis will be reviewed and approved by the candidate's supervising professor and external academic review committee.

a. The thesis should contain the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.

- Results
- Discussion and conclusions
- References.

b. Language of the thesis:

The thesis must be written in English language accompanied by a summary in Arabic.

c. Formation of Examiners Committees

A committee is selected by zoology Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

5. Program Admission Requirements:

An applicant for admission to the M.Sc. program in zoology should hold an B.Sc. degree in zoology with a minimum grade of (Good = 70%)

4- Program Student Evaluation

- Courses of pre-master academic year
- At least one published paper
- Written thesis
- Public hearing
- Defense exam

A. Program Specification

Program Title	Master of Insect Ecology
Award	Master of Insect Ecology
Parent Department	Zoology Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Prof. Amal Seif
External Evaluator(s)	applied
QAA Benchmarking	Academic Reference Standards (ARS)
Standards	
Other Reference Points	Bioscience, Egyptian Code of Assessment
Date of delivery	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	September, 2014

1. Aims

- To obtain broad, basic knowledge in the unique ecological roles of insects.
- To develop practical skills associated with ecological studies on insects and an understanding of how they can be used by the student for completion of original research, which should provide a significant contribution to knowledge.
- To enable students to acquire knowledge and understanding of insect pathogens and biotechnology, to show sources of information about biological control and those who practice it to teach the relevant aspects of lows that govern the practice of biological control.
- To enable the acquisition of a comprehensive range of transferable skills.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should be able to:

- A1. Explain the major pest problems, their recognition and underlying causes.
- A2. Describe the natural limitation of populations (abiotic and biotic); classical biological control.
- A3. Enumerate the ecological and management principles of pest control.
- A4. Explain assessing effects of biological control agents, partitioning mortality of pests.

B. Intellectual skills:

They will also acquire the ability to:

- B32. Formulate a hypothesis, plan and execute laboratory investigation or development work, evaluate the manipulation of antimicrobial defense systems for pest control.
- B33. Discuss the familiar and unfamiliar problems related to pest management.
- B34. Analyse, synthesise and assimilate diverse information in a critical manner.

- B35. Construct reasoned arguments to support a position on the ethical and social impact of scientific advances and appreciate the existence of different points of view.
- B36. Formulate and test hypotheses using appropriate experimental design and statistical analysis of data.

C. Professional and practical skills:

- C24. Use appropriate software package to analyze quantitative data about the susceptibility of insects to insecticides .
- C25. undertake laboratory investigations in a responsible, safe and ethical manner.

D. General and transferable skills:

- D36. Apply statistical and modeling skills.
- D37. Apply numerical and IT skills with confidence and accuracy.
- D38. Work both independently and in collaboration with others.
- D39. Take responsibility for self-managed learning and personal/professional development.

3. Academic standards

3.A External references for standards (Benchmarks):

National academic reference standards (NARS).

4. Curriculum Structure and contents:

4.A	Programme duration: one year				
4.B	Programme structure				
4.B.1	Number of contact hours	per Week:			
		Lectures	6	Lab.	6
	Overall Contact hours	Lectures	8	Lab.	7
4.B.2	Number of contact hours	Compulsory	6	Optional	6
4.B.3	Thesis				

5. Programme courses

Year 1	Course Title	Lec.	Prac.	Program ILOs Covered
Three o	of the first five courses are ory:			
1	Insecticides and pollution	2	2	KU, I, P,T
2	Insect Ecology and population dynamics	2	2	KU, I, P,T
3	Insect Biological control.	2	2	KU, I, P,T
4	Medical Entomology	2	2	KU, I, P,T
5	Biostatistics	1	-	KU, I, P,T
6	Computer	1	1	KU, I,P, T

6. Programme admission requirements

Candidates must satisfy the general admission requirements of the University and Faculty in Biology and also hold B. Sc. in Entomology or its equivalent, with a "good" degree as a minimum for approval.

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression:

- The programme includes one year of coursework, followed by laboratory investigation in a mentored environment.
- Assessment is held by the end of the first year, and student will be eligible only on attaining a "pass" degree (60%).
- The student who fails certain course at the first attempt will be eligible for only a "Pass" degree following only one re-set examination.
- The student can submit his thesis only after one year from the date of the Faculty Council approval on the thesis subject.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	applied	
5. student questionnaire	applied	A questionnaire applied on courses individually

We certify that all of the information required to deliver this programme is contained in the above specification and will be implemented. All course specifications for this program are in place

Name	Signature	Date
Programme Coordinator: Prof. Amal Seif (أ. د. آمال سيف)		/9/2014
Head of Quality Assurance Unit: Prof. Hoda Kamal Seif (أ. د. هدى كمال سالم)		/9/2014
Dean of the Faculty:		
Prof. Tarek Fayed.		/9/2014
(أ. د. طارق فاید)		

M.Sc. Courses: Programme Matrix
Programme Title: Master of Science (M.Sc.) degree in Physiology

Programm	ugi	aill	ine	1111	C. IV.									ee ii arnin	ig ou					
intended			k	U						I				I				T		
learning outcomes	A	A	A	A	A	A	В	В	В	В	В	В	В	C	C	D	D	D	D	D
ILOs	1	2	3	4	5	6	1	2	3	4	5	6	7	1	2	1	2	3	4	5
A1. Explain	٧																			
the major	V																			
pest																				
problems																				
A2.																				
Describe																				
the natural																				
limitation of populations																				
A3.																				
Enumerate																				
the																				
ecological																				
A4.																				
Explain																				
assessing effects of																				
biological																				
control																				
agents																				
B1. For										V										
mulate a																				
hypothesis																				
B2. Dis																				
familiar																				
and																				
unfamiliar																				
problems.																				
B3. An								٧												
alyse,																				
synthesise and																				
assimilate																				
diverse																				
informatio																				

n in a									
critical									
manner.									
D4 6									
B4. Co				٧					
nstruct									
reasoned									
arguments									
to support									
a position									
on the									
ethical									
B5. For						٧			
mulate									
and test									
hypothese									
s using									
appropriat									
е									
experimen									
tal design									
C1. Us									
e									
appropriate									
software									
package to									
analyze									
quantitative									
data									
C2. Un						٧			
dertake						-			
laboratory									
investigati									
ons									
D1. Ap							٧		
ply									
statistical									
and									
modeling									
skills.									
SKIIIS.									
D2. Ap							٧		
ply									
numerical									
and IT									
skills with									
confidence									
and									

accuracy.											
D3. W									٧		
ork both											
independe											
ntly and in											
collaborati											
on with											
others.											
										_	
D4. Ta										٧	
ke											
responsibil											
ity for											
self-											
managed											
learning											

Course - Programme ILOs Matrix (Curriculum Map)

Course title	Intended learning outcomes ILOs															
titie	KU						I						P			
	A	A	A	A	В	В	В	В	В	C	С	D	D	D	D	
	1	2	3	4	1	2	3	4	5	1	2	1	2	3	4	
Insect		٧						٧			٧				٧	
Ecology and																
population																
dynamics																
Insect			٧	٧				٧			٧				٧	
Biological																
control.																
Medical	٧				٧	٧		٧			٧				٧	
Entomology																
Biostatistics							٧	٧	٧	٧		٧				
Computer									1	1			1	1		
Thesis					٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	

B. Course Specification

Course Title	Insecticides and poll	ution
Course Code	14104	
Academic Year	2014/ 2015	
Coordinator	Prof. Amal I. Seif	
Other Staff		
Semester	First and second se	mesters
Level	Graduate-MSc	
Pre-Requisite	B. Sc, and equivaler	nt degrees
Course	Lecture	2h lecture / week
Delivery		
	Practical	2h practices/week
Parent	Zoology Department	
Department		
Date of	September, 2014	·
Approval		

1. Aims

This module aims to enable students to

- 1- Acquire knowledge and critical understanding of the important properties of organic compounds used for the preparation of insecticides.
- 2- Know the development and types of resistance; mechanism of resistance: metabolism of insecticides; detoxification mechanism in insects, principles in the analysis of formulations and residue, fate of insecticides in soils.
- 3- Understand Insecticide control order-uses and limitations.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of the student should be able to:

- A1. Explain the major pest problems, their recognition and underlying causes
- A2. Enumerate control methods, application and their effective integration.
- A3. Describe the ecological and management principles of pest control.
- A4. State the economic and environmental costs of control methods and their evaluation.

B. Intellectual skills:

They will also acquire the ability to:

B1. Analyze and solve pest management- based problems using an integrated multidisciplinary approach, applying professional judgments to balance costs, benefits, safety and social and environmental impact

B2. Formulate and test hypotheses using appropriate experimental design and statistical analysis of data.

C. Professional and practical skills:

- C1. Use basic laboratory equipment for determinations of insecticide residue.
- C2. Use appropriate software package to analyze quantitative data about the susceptibility of insects to insecticides

D. General and transferable skills:

By the end of this course, the students who keep attendance should be able to:

- D1. Apply statistical and modeling skills.
- D2. Integrate and evaluate information from a variety of sources.
- D3. Transfer techniques and solutions from one discipline to another.
- D4. Manage resources and time.

3. Contents

Lectures

Lecture 1	Important properties of organic compounds used for preparation of insecticides, insecticide formulations.
Lecture 2	Insecticide classification based on chemical composition, mode of entry, and mode of action.
Lecture 3	Properties, mode of action of natural organic insecticides and inorganic insecticides.
Lecture 4	Synthetic organic insecticides, chemistry of organochlorine compounds.
Lecture 5	Chemistry of carbamates and chemistry of pyrethroids and miscellaneous organic insecticides.
Lecture 6	Fate of insecticides in the soil and nteractions of insecticides.
Lecture 7	Storage of insecticides, stability and compatibility of insecticides.
Lecture 8	Insecticide control order, uses and limitations.
Lecture 9	Mechanisms of insecticide resistance(genital, physiological and biochemical)
Lecture 10	Insecticides and environmental pollution: Broad spectrum, adverse effects on nontarget arthropods.

Lecture 11	Outbreak of secondary pests. Persistence environmental pollution.
Lecture 11	reisistence environmental ponution.
Lecture 12	Toxicity to mammals(carcinogens)
	Phytotoxicity.
Lecture 13	Toxicity to wild life(birds, amphibians and reptiles)
Lecture 14	Revision
Lecture 14	Assessment
	Sections
Section 1	Important properties of organic compounds used for preparation of insecticides, insecticide formulations.
Section 2	Insecticide classification based on chemical composition, mode of entry, and mode of action.
Section 3	Properties, mode of action of natural organic insecticides and inorganic insecticides.
Section 4	Synthetic organic insecticides, chemistry of organochlorine compounds.
Section 5	Chemistry of carbamates and chemistry of pyrethroids and miscellaneous organic insecticides.
Section 6	Fate of insecticides in the soil and nteractions of insecticides.
Section 7	Storage of insecticides, stability and compatibility of insecticides.
Section 8	Insecticide control order, uses and limitations.
Section 9	Mechanisms of insecticide resistance(genital, physiological and biochemical)
Section 10	Insecticides and environmental pollution: Broad spectrum, adverse effects on nontarget arthropods.
Section 11	Outbreak of secondary pests. Persistence environmental pollution.

Section 12 Toxicity to mammals(carcinogens)

Section 13 Phytotoxicity.

Toxicity to wild life(birds, amphibians and reptiles)

Revision

Section 14

Assessment

4. Teaching and Learning Methods

- Lectures
- Practical classes

5. Student Assessment

Assessment	Skills	Assessment Length	Schedule	Proportion	
Method	assessed*	Assessment Length	Scriedule	Froportion	
Written	KU, I	3 Hour Examination	Final term	60%	
Examination	KU, I	3 Hour Examination	(June)	00%	
Practical	D	2 Hour Examination	Final term	40%	
Examination	P	Z HOUI EXAMINATION	(June)	40%	

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T:

Transferable

6. List of references

Course notes:

- Course notes and Laboratory manual authorized by the Council of Department of zoology

Essential Books:

- Buchech, K.H. (1983). Chemistry of pesticides. John Wiley and sons, Newyork Recommended Books:

Encyclopedia of insects Web sites: Wekepedia

- -Projectors: Video.
- -Computer Presentations and Writing Boards
- -Microscopes; Compound and Stereoscopic.
- -Microscopic Histological Preparations.
- -Library

	Course Coordinator	Head of Department
Name	Prof. Amal I. Seif	Prof. Nabil Elfiky
Name (Arabic)	أ. د. أمال إبراهيم سيف	أ. د. نبيل الفقى
Signature		
Date	/9/2014	/9/2014

Matrix 1: The relationship between the aims and Intended learning outcomes

		Indented learning outcomes											
Aims	Kno	wledg	e and		Intelle	ctual	Profes	sional	General and				
	Und	dersta	nding		miene	ctuai	and pr	transferable					
	A1	A2	А3	Α4	B1 B2		C1	C2	D1	D2	D3	D4	
1	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	
2	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	
3	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	

Matrix 2: The relationship between the contents and Intended learning outcomes

				Inde	nted	learn	ing out	comes				
contents	Knowledge and Understanding			Inte	Intellectual			essional and actical	General and transferable			
	A1	A2	Α	A4	B1	B2	C1	C2	D	D	D	D
			3						1	2	3	4
Important	٧	٧			٧							
properties of												
organic												
compounds												
Insecticide			٧	٧	٧	٧	٧					
classification												
based on												
chemical												
composition												
Properties, mode	٧			٧			٧	٧			٧	
of action of												
natural organic												
insecticides												
Synthetic organic		٧	٧			٧	٧	٧	٧	٧		
insecticides												
Chemistry of				٧	٧	٧	٧	٧			٧	٧
carbamates												
Fate of	٧	٧		٧	٧			٧	٧		٧	٧
insecticides in												
the soil and												
nteractions of												
insecticides.												
Storage of			٧	٧			٧	٧	٧	٧		
insecticides,												
stability and												
compatibility of												
insecticides.												

				Inde	nted	learn	ing out	comes				
contents	;	Knowledge and Intellectual Jnderstanding				ı	pra	essional and actical	t		ral a feral	
	A1	A2	A 3	A4	B1	B2	C1	C2	D 1	D 2	D 3	D 4
Insecticide control order, uses and limitations.	٧	٧			٧	٧						
Mechanisms of insecticide resistance(genital		٧	٧	٧	٧		٧	٧				
Insecticides and environmental pollution		٧	٧		٧	٧						
Outbreak of secondary pests.	٧	٧			٧	٧	٧	٧	٧	٧		
Toxicity to mammals(carcin ogens)		٧	٧			٧	٧	٧	٧			
Phytotoxicity. Toxicity to wild life			٧	٧	٧	٧		٧	٧			
Revision Assessment	٧	٧	٧	٧	٧	٧	٧	٧				
Important properties of organic compounds			٧	٧	٧	٧						
Insecticide classification based on chemical composition	٧	٧	٧	٧			٧	٧	٧	٧		
Properties, mode of action of natural organic insecticides and inorganic insecticides.			V	٧	٧	٧	٧	٧	٧			
Synthetic organic insecticides	٧	٧				٧	٧	٧		٧	٧	٧
Chemistry of carbamates insecticides.			٧	٧		٧	٧		٧	٧	٧	٧
Fate of insecticides in the soil	٧	٧	٧	٧			٧	٧				
Storage of		٧	٧		٧	٧		٧	٧		٧	٧

				Inde	nted	learn	ing out	comes				
contents	Knowledge and Understanding		Inte	Intellectual			Professional and practical		General and transferable			
	A1	A2	A 3	A4	B1	B2	C1	C2	D 1	D 2	D 3	D 4
insecticides												
Insecticide control order												
Mechanisms of insecticide resistance												
Insecticides and environmental pollution												
Outbreak of secondary pests.												
Toxicity to mammals(carcin ogens)												
Phytotoxicity.												
Toxicity to wild life												
Revision Assessment												
Practical part												

Course Title	Biological control						
Course Code	1651						
Academic Year	2014/ 2015						
Coordinator	Prof. Amal I. Seif	Prof. Amal I. Seif					
Other Staff							
Semester	Continous academi	Continous academic year					
Level	Graduate-MSc	Graduate-MSc					
Pre-Requisite	B. Sc, or equivale	nt degrees					
Course Delivery	Lecture	2h lectures /week					
	Practical	2h practicals/week					
Parent	Zoology Department						
Department							
Date of Approval	September, 2014						

1. Aims

This module aims to enable students to

- 1- Acquire knowledge and understanding of insect pathogens and biotechnology. principle groups of entomopathogene.
- 2- Demonstrate the methods used in biological control of insects and other arthropods (by using predators and parasitoids) ,pathogens and entomopathogens ,nematodes.
- 3- Understand the biological control of weeds using plant feeding insects and other arthropods to show sources of information about biological control and those who practice it to teach the relevant aspects of lows that govern the practice of biological control.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A1. Describe the natural limitation of populations (abiotic and biotic); classical biological control.
- A2. Explain augmentative biological control.
- A3. Explain assessing effects of biological control agents, partitioning mortality of pests.
- A4. Explain DNA characterization of insect viruses, insect cell culture-characterization in vitro replication of NPV in insect cells-in vitro and in vivo recombinants of NP.

B. Intellectual skills:

They will also acquire the ability to

- B1. Demonstrate manipulation of antimicrobial defense systems for pest control.
- B2. Demonstrate the technology for fungal pathogens-protoplast fusion.

C. Professional and practical skills:

- C1.Assess inset viruses, bacteria, fungi, protozoa and histopathology of infection.
- C2. Use computer package to evaluate improved strains.
- C3. Examine in vivo and in vitro production-genetic improvement of *Bacillus* thuringenesis

D. General and transferable skills:

- D1. Write reports including graphical material and give oral presentation.
- D2. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills and to seek and apply to suitable employment.
- D3. Life-long learning and self development.

3. Content

- Studying principal groups of entomopathogens, bacteria, bacculoviruses, fungi, protozoa and nematodes.
- Molecular characterization of insect bacculoviruses and bacteria.
- Molecular characterization of insect fungi and protozoans.
- Mode of entry and replication of bacteria.
- · Mode of entry and replication of protozoans.
- · Mode of entry and replication of fungi.
- · Host resistance to entomopathogenes.
- Manipulation of antimicrobial defense system for pest control.
- Genetic improvement of bacculovirus-strains, characterization serial passage, mutation, in vitro recombination.
- · Genetic engineering of bacculoviruses.
- · Cloning of foreign genes into IVPV.
- Insect cell lines.
- Cloning and characterization of insect cell lines.
- Fusion of insect cells and applications.
- In vitro production of bacculoviruses and preparation of inoculum, effect of media, clonal cell lines, use of stationary culture, large volume culturing, production and fermentation, semiculture.
- Strain development in bacteria.
- Genetic improvement of *Bacillus thuringineses*, strain selection, identification and characterization
- · Practical part with the same topics shown above

4. Teaching and Learning Methods

- Lectures
- Practical classes

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	P	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferabl

6. List of references

Course notes:

Course notes and Laboratory manual authorized by the Council of Department of Zoology.

Essential Books:

Recommended Books:

Web sites:

- Projectors: Video.
- Computer Presentations and Writing Boards
- Microscopes; Compound and Stereoscopic.
- Library

	Course Coordinator	Head of Department
Name	Prof. Prof. Amal I. Seif	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. / أمال إبراهيم سيف	أ. د.نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title		Intended learning outcomes ILOs										
		K	U]	[P			T	
	A1	A2	A3	A4	B1	B2	C1	C2	C3	D1	D2	D3
Studying principal groups of entomopathogens, bacteria, bacculoviruses, fungi, protozoa and nematodes.	V											
Molecular characterization of insect bacculoviruses and bacteria.	V											
Molecular characterization of insect fungi and protozoans.	٧											
Mode of entry and replication of bacteria.	٧											
Mode of entry and replication of protozoans.	٧											
Mode of entry and replication of fungi.	٧											
Host resistance to entomopathogenes.					٧							
Manipulation of antimicrobial defense system for pest control.		√	٧									
Genetic improvement of bacculovirus-strains,				٧								

ahana ataut attau		1								
characterization										
serial passage,										
mutation, in vitro										
recombination.										
Genetic			٧							
			V							
engineering of										
bacculoviruses.										
Cloning of foreign			٧							
genes into IVPV.										
Insect cell lines.			٧							
Cloning and			٧							
characterization of										
insect cell lines.										
Fusion of insect			٧	٧						
cells and										
applications.										
In vitro production			٧							
of bacculoviruses										
and preparation of										
inoculum, effect of										
media, clonal cell										
lines, use of										
stationary culture,										
large volume										
culturing,										
production and										
fermentation, semiculture.										
Semiculture.										
Strain development			٧							
in bacteria.										
Genetic			٧							
improvement of										
Bacillus										
thuringineses,										
strain selection,										
identification and										
characterization					,		,	,	,	,
Practical part with					٧	٧	٧	٧	٧	٧
the same topics										

Course Title	Medical entomolog	sy .					
Course Code	1653	1653					
Academic Year	2014/2015	20\4/20\5					
Coordinator	Prof. Amal I. Seif	Prof. Amal I. Seif					
Other Staff	Prof. Ibrahim Bakr						
Semester	The first and second semesters						
Pre-Requisite	B. Sc, and equival	ent degrees					
Course Delivery	Lecture	2h lectures /week					
	Practical	2h practicals/week					
Parent	Zoology Department						
Department							
Date of Approval	September, 2014	·					

1. Aims

This course enables the students to

- 1- Gain knowledge and understanding of the biology and diversity of medically important insects and other arthropods and their associated diseases.
- 2- Following introduction emphasizing basic principles and concepts of medical and veterinary entomology.

2. Intended Learning outcomes

A. Knowledge and understanding:

Upon successful completion of this course the student should be able to:

- A1. Describe the entomological principles of insect identification, insect physiology, insect toxicology, and insect ecology.
- A2. Mention insect and tick-borne diseases
- A3. Identify insects, ticks, and other arthropods of public health importance; develop control programs

B. Intellectual skills:

They will also acquire the ability to

- B1. Demonstrate medical entomology with responsibility for mosquito, fly, tick, lice, or rodent control programs.
- B2. Compare between symptoms of different diseases transmitted by insects

C. Professional and practical skills:

- C1. Use computer research on vector-borne diseases, and on the physiology and taxonomy of medically important arthropods.
- C2. Planning and directing comprehensive method for control of pests and animals affecting human health and the environment .

D. General and transferable skills:

- D1. Use the internet
- D2. Prepare a research plan (proposal)
- D3. Prosecutes a research by applications of laboratory or field techniques.
- D4. Gain both written and oral communication skills.
- D5. Use databases and library search methods.

3. Contents

- · Introduction, overview of arthropods.
- Arthropods and diseases: concepts and principles
- pathogen biology and medical insect morphology
- allergy and arthropods
- · venomous arthropods and entomophopia
- lice and lice borne diseases, fleas and flea borne diseases, mosquitoes and mosquito born diseases, biting flies and diseases
- tick and tick borne diseases, mite and mite borne diseases
- · mechanism of transmission of leishmania
- glossinanatomya and glossina borne disease tse-tse, bed bug, cone-nose bugs
- family simuliidae (black flies), family psychodidae(sand flies)
- family ceratopogonidae(biting midges)
- family tabanidae(horse flies), hyppoboscidae
- · muscid flies, myiasis
- · Vector control.

Practical part has the same topics shown above.

4. Teaching and Learning Methods

- Lectures
- Practical classes

5. Student Assessment

Assessment Method	Assessment Method Skills assessed*		Schedule	Proportion
Written Examination	KU, I	3 Hour Examination		60%
Practical Examination	Р	2 Hour Examination		40%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Course notes and Laboratory manual authorized by the Council of Department of Zoology.

Essential Books:

Web sites:

- -Projectors: Video.
- -Computer Presentations and Writing Boards
- -Microscopes; Compound and Stereoscopic.
- -Microscopic Histological Preparations.
- -Preserved Representative Models.
- -Museum, Library

	Course Coordinator	Head of Department
Name	Prof. Prof. Amal I. Seif	Prof. Nabil Kamal Elfiki
Name (Arabic)	أ. د. / أمال إبراهيم سيف	أ. د.نبيل كمال الفقى
Signature		
Date	/9/2014	/9/2014

Course title	Intended learning outcomes ILOs											
	KU				I]	P			T		
	A 1	A 2	A 3	B 1	B 2	C 1	C 2	D 1	D 2	D 3	D 4	D 5
Introduction,	٧											
overview of												
arthropods.												
Arthropods and	٧			٧								
diseases												
pathogen biology and	٧											
medical insect												
morphology												
allergy and	٧											
arthropods												
venomous arthropods	٧											
and entomophopia												
lice and lice borne	٧			٧	٧							
diseases, fleas and												
flea borne diseases												
tick and tick borne	٧	٧		٧	٧							
diseases, mite and												
mite borne diseases												
mechanism of	٧				٧							
transmission of												
leishmania												
glossinanatomya and	٧				٧							
glossina borne												
disease tse-tse												
family simuliidae	٧				٧							
(black flies)												
family	٧				٧							
ceratopogonidae(biti												
ng midges)												
family	٧											
tabanidae(horse												
flies), hyppoboscidae												
muscid flies , myiasis	٧											
Vector control.			٧	٧								
Practical part						٧	٧	٧	√	√	٧	٧

Course Title	Biostatistics	Biostatistics						
Course Code	23094	23094						
Academic Year	2014/2015	2014/2015						
Coordinator	Prof. Abd-Elmoneim Anwar Mohamed							
Other staff								
Semester	The first and seco	nd terms						
Pre-Requisite	B. Sc. Zoology							
Course delivery	Lecture	1h lectures/week						
	Practical	-						
Parent Department	Mathematics Department							

1. Aims

- provide M. Sc. students in biology with basic concepts of study design and data analysis suitable for laboratory and field research
- to help students to develop the skills needed to apply statistical methods using related statistical software; e.g. Primer or GraphPad in scientific biological research. Emphasis will be on practical and applied skills using example of relevance to biology students.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of this course the students should be able to:

- A25. Enumerate statistical measures for data description; statistical estimation; correlations and testing hypothesis understand the basic principles of study design.
- A26. Describe the types of variables that are used in biological research.
- A27. Explain the role of sampling variation, to quantify the variability, and its role in comparing groups or categories.

B. Intellectual skills:

- B21. Discuss confidently simple essential statistical methods in biological research and to interpret results.
- B22. select appropriate statistical methods for analysis of simple data sets and apply them on a computer using bio-statistical software, GraphPad.
- B23. summarise data using graphical and tabular data.
- B24. interpret research findings and explain them in a clear, concise and logical manner.

C. Professional and practical skills

- C16. Select and apply appropriate basic statistical methods for analysis of data.
- C17. Use GraphPad package in data analysis.
- C18. Tackle skills in handling data on a computer and otherwise, and deriving and presenting quantitative results using appropriate tables, figures, and summaries.

D. Transferable skills

- D19. Write report including graphical material.
- D20. Present and discuss the finding from statistical analysis in a clear, concise and logical manner.
- D21. Use internet and other electronic sources as a source of information.

3. Contents

Analysis and design of research studies (two hours/week)

Lectures 1	Introduction: Variables and distributions.
Lectures 2-3	Summarizing data.
Lectures 4-5	Sampling variability of a mean.
Lectures 6-7	Analysis of quantitative data: Comparing means: comparing two samples.
Lectures 8-9	ANOVA: Comparing more than two samples.
Lecture10	Examination.
Lectures 11-12	Sampling variability of proportions.
Lectures 13-14	Analysis of categorical data; comparing two proportions
Lectures 15-16	Regression and correlation.
Lectures 17-18	Comparing correlations and regression. Multiple regressions.
Lectures 19-20	Regression and correlation: Computer applications.
Lectures 21-22	Comparing distribution: Computer applications.
Lectures 23-24	Comparing means: Computer applications.
Lectures 25-26	Comparing variances: Computer applications.
Lectures 27-28	Design of experiments: The null hypothesis, statistical significance

Weeks 31, 32 Assessment

Lectures 29-30 Revision

4. Teaching and Learning Methods

- Lectures are an integral part of course delivery in this course, supported by problems classes, tutorial groups, computational work, office hours, and individual tutorials.

and rejecting the null hypothesis.

- Students engage in private study in which they work through set problem sheets and individual assignments as well as assimilating lecture content.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	3 Hour Examination	The 32 Week	90%
Oral Assessment	KU, I	Assessment Session	Term Final	5%
Semester work	KU, I	Continuous Assessment		5%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Essential books

- Glantz, Stanton A. (2005): Primer of Biostatistics, 6th Edition McGraw-Hill. *Recommended books*
 - Samuels, M. L. (1989): Statistics for the Life Sciences. Dellen Publishing Company, USA.
 - Rosner, B. (1990): Fundamentals of Biostatistics. PWS-Kent Publishing Company, USA.

- Projectors: Video and Overhead.
- Computers Presentations and Writing Boards
- Primer or GraphPad biostatistics software.

	Course Coordinator	Head of Department
Name	Prof. Abd-Elmoneim A. Mohamed	Prof Qadry Zakaria
Name (Arabic)	أ. د. عبد المنعم محمد طعيمه	أ. د. قدری زکریا
Signature		
Date	/9/2014	/9/2014

Course title		Intended learning outcomes ILOs												
		K	U			I				P		T		
	A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	C3	D1	D2	D3
Introduction	٧	٧	٧	٧										
Summarizing data.	٧	٧	٧	٧										
Sampling variability of a mean.	٧	٧	٧	٧										
Analysis of quantitative data	٧	٧	٧	٧										
ANOVA	٧	٧	٧	٧	√	√		٧						
Examination.	٧	٧	٧	٧										
Sampling variability of proportions.	٧	٧	٧	٧										
Analysis of categorical data	٧	٧	٧	٧		٧								
Regression and correlation.	٧	٧	٧	٧										
Comparing correlations and regression.	٧	٧	٧	٧										
Regression and correlation	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing distribution	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing means	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧
Comparing variances	٧	٧	٧	٧					٧	٧	٧	٧	٧	٧

Course Title	Computer						
Course Code	1657						
Academic Year	2014/2015						
Coordinator	Prof. Mohame	Prof. Mohamed El-Awady					
Other Staff	Prof. Mahmou	Prof. Mahmoud Kamel, Prof. Ahmed El-Shishtawy, Prof.					
	Qadry Zakaria	Qadry Zakaria					
Semester	Taught over 2	Taught over 2 semesters					
Pre-Requisite	B.Sc.						
Course Delivery	Lecture	1h lecture/week					
	Practical	1h practical/week					
Parent	Computer Cei	ntre					
Department							
Date of Approval	September, 2	014					

1. Aims

This course will enable students to acquire a range of transferable skills that are important for post graduate M. Sc. students to:

- Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies.
- Underpin academic work throughout postgraduate studies.
- Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

A. Knowledge and understanding:

Upon successful completion of this course the students should be able to:

- A1. Mention the use of IT in the context of the postgraduate studies.
- A2. Define the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A3. Describe different photo enhancing and manipulation techniques.

B. Intellectual skills:

They should also acquire the ability to:

- B6.Integrate different application programs to develop effective information analysis and presentation.
- B7. Solve scientific problems using computer programming.

C. Professional and practical skills:

- C1. Use a number of computer packages to present information.
- C2. Prepare presentation using sophisticated software packages.
- C3. Make use of different internet resources.
- C4. Carry out necessary graphical, statistical and frequency analyses of different types of data

D. General and transferable skills:

D5. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear —exponential-logarithmicetc)

Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Creating powerful presentation including charts, images, video, etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports to extract useful information

Computer programming language

Assignment 6: Programming using Visual Basic 6

Solving real problems using a computer language

Photo manipulation and enhancement using the photoshop

Assignment 7: Using the Photoshop program

Practicing on manipulation and enhancing of images

Introduction to Data frequency analysis using Fourier analysis and Fourier transformation searching for periodicities

4. Teaching and Learning Methods

- Lectures
- Practical classes
- Assignments

The course is delivered through lectures, practical sessions and assignments. Team working skills are developed on a week-long laboratory exercises and the students present and defend their findings in a public seminar.

5. Student Assessment

Assessment Method	Skills assessed*	Assessment Length	Schedule	Proportion
Written Examination	KU, I	1 Hour Examination	Term Final	60%
Practical Examination	KU, I	1 Hour Examination t	Term Final	30%
Semester work	Р, Т	Continuous Assessment		10%

^{*}KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

6. List of references

Course notes:

- Notes given to students at each section describe the tasks to be completed, therefore no particular book(s) recommended.

- Projectors; Video and Overhead
- LCD screens and writing Boards
- Commercial computer scientific software packages.

Cor	urse Coordinator	Head of Department				
Name	Prof. Mohamed M. El-Awady	Prof. EL Sayed Taha Rizq				
Name (Arabic)	أ.د.محمد العوضي	أد. السيد طه رزق				
Signature						
Date	/9/2014	/9/2014				

Course title	Intended learning outcomes ILOs										
				KU				I	P	T	
	A1	A2	A3	A4	A5	A6	A7	B 1	C1	D1	
Methods for graphical representations, Data analysis and Data modeling											
Assignment 1 : Using Application programs	٧	٧	٧	٧	٧	٧	٧				
Statistical Data analysis	٧	٧	٧	٧	٧	٧	٧	٧			
Assignment 2 : Using Application programs	٧	٧	٧	٧	٧	٧	٧	٧			
Creating powerful presentation	٧	٧	٧	٧	٧	٧	٧				
Assignment 3 : Using PowerPoint program	٧	٧	٧	٧	٧	٧	٧		٧		
Use of internet capabilities and searching engines	٧	٧	٧	٧	٧	٧	٧			٧	
Assignment 4: Using the Internet	٧	٧	٧	٧	٧	٧	٧			٧	
Creating Data Base and related Queries and Reports	٧	٧	٧	٧	٧	٧	٧				
Assignment 5: Using Application programs	٧	٧	٧	٧	٧	٧	٧				
Computer programming language	٧	٧	٧	٧	٧	٧	٧				
Assignment 6: Programming using Visual Basic 6	٧	٧	٧	٧	٧	٧	٧				
Photo manipulation and enhancement using the photoshop	٧	٧	٧	٧	٧	٧	٧				
Assignment 7: Using the Photoshop program	٧	٧	٧	٧	٧	٧	٧				

Posquadas Program and Gourse Specifications

Botany

Contents

M.Sc. Programm specifications of Master of Ecology 1 M. Sc. program specifications of Master of Ecology 1 Methods of vegetation analysis, population ecology and germination and advanced studies on the phytosociology 15 Principles of geology and geological screening 27 Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations 32 Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations 50 Computer 50 M.Sc. Program of Physiology 56 Uses of Instrumental Equipments & Chromatography 66 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.Sc. Programs pecifications of Master of Genetics 116 M.Sc. Program specifications of Master of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture </th <th>Course Name</th> <th>Page</th>	Course Name	Page
Methods of vegetation analysis, population ecology and germination and advanced studies on the phytosociology Precise principles of Geology and geological screening Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer M.S.C. Program of Physiology 50 Uses of Instrumental Equipments & Chromatography 61 Uses of Instrumental Equipments & Chromatography 62 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.S.C. Programm geofications of Master of Genetics M.S.C. program specifications of Master of Genetics Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Sc. program specifications of Master of Phycology 188 Phycology 188 Phycology 189 Phycology 180 Physiology of Microorganisms 1177 M. Sc. Program of Phycology 180 Physiology of Microorganisms 1177 Diploma program specifications of Master of Phycology 180 Physiology of Microorganisms 1177 Diploma program specifications of Master of Phycology 180 Physiology of Microorganisms 1217 Diploma program specifications of Master of Phycology 181 Biochemistry A 196 Physiology of Microorganisms 1217 Diploma program of Microbiolog Diploma program of Microbiology 124 Algae, Physiology of Algae, Physiology of fungi 125 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 130 130 130 130 130 130 130 131 132 132 133 134 136 137 139 139 130 130 130 130 130 130 130 130 130 130	M.Sc. Programme of Ecology	
on the phytosociology Precise principles of flowering plant systematic, palynology and flora Principles of geology and geological screening Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer M.Sc. Program of Physiology AProgram Specification of Master of Physiology Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading Ion absorption transport, water relations and stomata Manometric Methods in Metabolism and Nitrogen Metabolism 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.Sc. Programme of Genetics M.Sc. Programme of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M. Sc. Program of Phycology M. Sc. Program of Phycology M. Sc. Program of Microbiolog Phycology 188 Phycology 188 Phycology 188 Phycology 189 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer Diploma program of Microbiolog Diploma program of Microbiolog Diploma program of Microbiology Algae, Physiology of Algae, Physiology of fungi 330 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi Biochemistry, A poplied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics 332 M.Sc. Program pecifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather	M. Sc. program specifications of Master of Ecology	1
on the phytosociology Precise principles of flowering plant systematic, palynology and flora Principles of geology and geological screening Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer M.S.C. Program of Physiology M.S.C. Program of Physiology Solution of Master of Phycology Solution of Statistics and experimental Taxonomy Solution of Solution of Master of Phycology M.S.C. Program of Phycology M.S.C. Program specifications of Master of Phycology M.S.C. Program specifications of Master of Phycology M.S.C. Program of Microbiolog Diploma program specifications of Microbiology Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Solution of Microbiology of Master of Microbiology M.S.C. Programme of Microbiology and Tanning of leather Biostatistics Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, App	Methods of vegetation analysis, population ecology and germination and advanced studies	8
Principles of geology and geological screening Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer 50 M.Sc. Program of Physiology 56 Also: Program of Physiology 56 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer M.Sc. Programme of Genetics M. Sc. program pecifications of Master of Genetics M. Sc. program specifications of Master of Genetics M. Sc. program specifications of Master of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology 187 M. Sc. Program specifications of Master of Phycology 188 Phycology 189 Biochemistry A 196 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program specifications of Microbiology 244 Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 188 M. Sc. Program specifications of Master of Microbiology M. Sc		Ů
Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer M.Sc. Program of Physiology A.Program Specification of Master of Physiology Less of Instrumental Equipments & Chromatography Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading Advanced biochemistry and organic acids metabolism Physiology of microorganisms and Free reading Advanced biochemistry and organic acids metabolism 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer M.Sc. Programme of Genetics M.Sc. Programme of Genetics M.Sc. Programme specifications of Master of Genetics Molecular Biology and Biochemistry 131 Cytogenetics Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M. Sc. Program specifications of Master of Phycology M. Sc. Program specifications of Master of Phycology M. Sc. Program specifications of Master of Phycology 188 Biochemistry A 196 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 2235 Computer Diploma program specifications of Microbiology Diploma program specifications of Microbiology Diploma program specifications of Microbiology M. Sc. Program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics M. Sc. Program specifications of Master of Microbiology M. Sc. Program specifications of Master of		15
Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer M.Sc. Program of Physiology A. Program Specification of Master of Physiology Uses of Instrumental Equipments & Chromatography 66 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer M.Sc. Programme of Genetics M.Sc. Programme of Genetics M.Sc. Programme of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology Biochemistry A Biochemistry B Phycology 184 Biochemistry B Biochemistry B Biostatistics 235 Computer Diploma program of Microbiolog Diploma program specifications of Microbiology Diploma program specifications of Microbiology Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biostatistics 322 M.Sc. Program specifications of Master of Microbiology M.Sc. program specifications of Microbiology Diploma program of Microbiology Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biostatistics 322 M.Sc. Program specifications of Master of Microbiology M.Sc. program specifications of Master of Microbi		27
Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations Computer So M.Sc. Program of Physiology A.Program Specification of Master of Physiology 56 Uses of Instrumental Equipments & Chromatography 66 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.Sc. Programme of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M.Sc. Program of Phycology M.Sc. Program of Phycology M.Sc. Program specifications of Master of Phycology 187 M.Sc. Program of Phycology 188 Phycology M.Sc. Program of Microbiology 189 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology Alage, Physiology of Algae, Physiology of fungi Biostatistics 322 M.Sc. Program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology M.Sc. program specifications of Master of Microbiology M.Sc. program speci		32
Computer 50 M.Sc. Program of Physiology 56 Uses of Instrumental Equipments & Chromatography 66 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.Sc. Programme of Genetics 108 M.Sc. program specifications of Master of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology 188 Phycology 188 Phycology 188 Phycology 189 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program specifications of Microbiology 243 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology 410 M. Sc. Program specifications of Master of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology of fungi 750 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and 150 Biochemistry, Biochemistry of fermentation, Immunology 750 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and 150 Biochemistry, Biochemistry of fermentation, Immunology 750 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and 150 Biochemistry, Biochemistry of fermentation, Immunology 750 General Bacteriology, Applied Bacterio		
Computer A.Program of Physiology A.Program Specification of Master of Physiology D. Uses of Instrumental Equipments & Chromatography Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading Ion absorption transport, water relations and stomata Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer M.Sc. Programme of Genetics M.Sc. program specifications of Master of Genetics Molecular Biology and Biochemistry 116 Molecular Biology and Biochemistry 117 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M.Sc. Program of Phycology M.Sc. program specifications of Master of Phycology M.Sc. program specifications of Miscrobiology M.Sc. program specifications of Miscrobiology Algae, Physiology of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biostatistics General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather M.Sc. Program specifications of Master of Microbiology M.Sc. program sp	± *	43
M.Sc. Program of Physiology 56 A. Program Specification of Master of Physiology 56 Uses of Instrumental Equipments & Chromatography 66 Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 84 Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.Sc. Programme of Genetics 108 M.Sc. Program specifications of Master of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog 254 Algae, Physiolo		50
A. Program Specification of Master of Physiology Uses of Instrumental Equipments & Chromatography 66		30
Uses of Instrumental Equipments & Chromatography Advanced biochemistry and organic acids metabolism 75 Physiology of microorganisms and Free reading 100 absorption transport, water relations and stomata 101 Manometric Methods in Metabolism and Nitrogen Metabolism 102 Computer 103 Manometric Methods in Metabolism and Nitrogen Metabolism 105 M.Sc. Programme of Genetics 106 M.Sc. Programs specifications of Master of Genetics 117 M.Sc. Program specifications of Master of Genetics 118 Genetic Engineering 119 Population genetics and Cell and Tissue Culture 110 Statistics and experimental Taxonomy 110 Computer 111 M.Sc. Program of Phycology 111 M.Sc. Program of Phycology 112 M.Sc. program specifications of Master of Phycology 113 Biochemistry A 114 Biochemistry B 115 Biochemistry B 116 Biochemistry B 117 Biostatistics 118 Biostatistics 119 Jiploma program of Microbiolog 119 Diploma program of Microbiolog 110 Diploma program of Microbiolog 110 Diploma program of Microbiolog 110 Diploma program specifications of Microbiology 110 Algae, Physiology of Algae, Physiology of fungi 110 Biochemistry of fermentation, Immunology, Plant pathology, Methodology and Instruments used in microbiology of fungi 110 Biochemistry, Biochemistry of fermentation, Immunology 111 Algae, Physiology of Algae, Physiology of fungi 112 Biochemistry, Biochemistry of fermentation, Immunology 113 Algae, Physiology of Algae, Physiology of fungi 115 Algae, Physiology of Algae, Physiology of fungi 116 M.Sc. Programm specifications of Master of Microbiology 117 Algae, Physiology of Algae, Physiology of fungi 118 Algae, Physiology of Algae, Physiology of fungi 119 Algae, Physiology of Algae, Physiology of fungi 110 Algae, Physiology of Algae, Physiology of fungi		56
Advanced biochemistry and organic acids metabolism Physiology of microorganisms and Free reading Ion absorption transport, water relations and stomata Manometric Methods in Metabolism and Nitrogen Metabolism Population M.Sc. Programme of Genetics M.Sc. Programme of Genetics M.Sc. Programs pecifications of Master of Genetics Molecular Biology and Biochemistry 116 Genetic Engineering 117 Population genetics and Cell and Tissue Culture Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology M. Sc. program specifications of Master of Phycology M. Sc. program specifications of Master of Phycology 184 Biochemistry A 196 Biochemistry A 196 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395 History Algae Physiology of Algae, Physiology of fungi Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology Instruments used in microbiology and Tanning o		
Physiology of microorganisms and Free reading Ion absorption transport, water relations and stomata Manometric Methods in Metabolism and Nitrogen Metabolism Computer 108 M.Sc. Programme of Genetics M.Sc. program specifications of Master of Genetics Ilia Cytogenetics Ilia Cytogenetics Ilia Cytogenetics and Cell and Tissue Culture Statistics and experimental Taxonomy Institute of Phycology M.Sc. program specifications of Master of Phycology M.Sc. program of Phycology M.Sc. program of Phycology M.Sc. program specifications of Master of Phycology Institute of Phycology M.Sc. program of Phycology Institute of Phycolo		
Ion absorption transport, water relations and stomata 93 Manometric Methods in Metabolism and Nitrogen Metabolism 99 Computer 108 M.Sc. Programme of Genetics 116 M.Sc. Programs specifications of Master of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology 188 Phycology 188 Phycology 188 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog 254 Diploma program specifications of Microbiology 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395 M. Sc. program specifications of Master of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biothemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Manometric Methods in Metabolism and Nitrogen Metabolism Computer M.Sc. Programme of Genetics M.Sc. Programs specifications of Master of Genetics Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology 188 Phycology 188 Phycology 188 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biostentistry of fermentation, Immunology, Plant pathology, Methodology and Instruments used in microbiology M. Sc. Program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of Itanji Biostatistics 325 M.Sc. Program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of Itanji Biostatistics 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of Itanji Biochemistry, Biochemistry of fermentation, Immunology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology Algae, Physiology of Algae, Physiology of Itanji Biochemistry, Biochemistry of fermentation, Immunology Algae, Physiology of Algae, Physiology of Itanji Biochemistry, Biochemistry of fermentation, Immunology Algae, Physiology of Algae, Physiology of Itanji Biochemistry, Biochemistry of fermentation, Immunology Algae, Physiology of Algae, Physiology of Itanji Biochemistry Biochemistry of fermentation, Immunology Algae, Physiology of Algae, Physiology of Itanji Biochemistry Biochemistry of		
Computer M.Sc. Programme of Genetics M. Sc. program specifications of Master of Genetics M. Sc. program specifications of Master of Genetics Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology M. Sc. program specifications of Master of Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer Diploma program of Microbiology Diploma program of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi Biostatistics 322 M.Sc. programme of Microbiology M. Sc. program specifications of Master of Microbiology M. Sc. program specifications of Master of Microbiology M. Sc. program specifications of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Algae, Physiology of flugi Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Secial fungi Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Secial fungi Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		
M.Sc. Programs of Genetics M. Sc. program specifications of Master of Genetics M. Sc. program specifications of Master of Genetics Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology of fungi Biostatistics 322 M.Sc. program specifications of Microbiology M. Sc. program specifications of furopiology M. Sc. program s		
M. Sc. program specifications of Master of Genetics 116 Molecular Biology and Biochemistry 131 Cytogenetics 142 Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology 188 Phycology 188 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog 254 Diploma program specifications of Microbiology 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology 332 M. Sc. program specifications of Master of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 370	•	100
Molecular Biology and Biochemistry Cytogenetics Genetic Engineering Population genetics and Cell and Tissue Culture Statistics and experimental Taxonomy Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology Biochemistry A Biochemistry B Physiology of Microorganisms 217 Biostatistics Computer 2235 Computer 243 Diploma program of Microbiolog Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biostatistics 323 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology of fungi Biochemistry, Biochemistry of fermentation, Immunology M. Sc. program specifications of Microbiology M. Sc. program specifications of Master of Microbiology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		116
Cytogenetics Genetic Engineering Population genetics and Cell and Tissue Culture Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology M. Sc. program specifications of Master of Microbiology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		
Genetic Engineering 149 Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 177 177 177 177 177 177 178 177		
Population genetics and Cell and Tissue Culture 156 Statistics and experimental Taxonomy 164 Computer 177 M. Sc. Program of Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 297 Biostatistics 322 M. Sc. Programme of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 326 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 297 Biostatistics 322 M. Sc. Programme of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Statistics and experimental Taxonomy Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology 4 Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology M. Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology M. Sc. program specifications of Master of Microbiology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		
Computer M. Sc. Program of Phycology M. Sc. program specifications of Master of Phycology Phycology Biochemistry A Biochemistry B Physiology of Microorganisms 217 Biostatistics Computer Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology M. Sc. Programme of Microbiology M. Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		
M. Sc. Program of Phycology 188 M. Sc. program specifications of Master of Phycology 184 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 322 M. Sc. Programme of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
M. Sc. program specifications of Master of Phycology 188 Phycology 184 Biochemistry A 196 Biochemistry B 206 Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 297 Biostatistics 322 M. Sc. program specifications of Master of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		1//
Phycology Biochemistry A Biochemistry B Biochemistry B Physiology of Microorganisms Physiology of Microorganisms Piploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics M. Sc. program specifications of Master of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 332 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 335		188
Biochemistry A Biochemistry B Physiology of Microorganisms 217 Biostatistics Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics 322 M.Sc. program specifications of Master of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology affermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Biochemistry B Physiology of Microorganisms 217 Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and 333 Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		
Physiology of Microorganisms Biostatistics Computer Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Biostatistics 235 Computer 243 Diploma program of Microbiolog Diploma program specifications of Microbiology 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Computer Diploma program of Microbiolog Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Diploma program of Microbiology Diploma program specifications of Microbiology 254 Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 297 Biostatistics 322 M. Sc. Programme of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Diploma program specifications of Microbiology Algae, Physiology of Algae, Physiology of fungi 263 Biochemistry of fermentation, Immunology, Plant pathology and Special fungi 283 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 297 Biostatistics 322 M.Sc. Programme of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		243
Algae, Physiology of Algae, Physiology of fungi Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		254
Biochemistry of fermentation, Immunology, Plant pathology and Special fungi General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather	Algon Physiology of Algon Physiology of fungi	
General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather Biostatistics 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		
Instruments used in microbiology and Tanning of leather Biostatistics 322 M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather		203
Biostatistics M.Sc. Programme of Microbiology M. Sc. program specifications of Master of Microbiology Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 322 333 346 370 395		297
M. Sc. Programme of Microbiology 333 M. Sc. program specifications of Master of Microbiology 346 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		322
M. Sc. program specifications of Master of Microbiology 333 Algae, Physiology of Algae, Physiology of fungi 346 Biochemistry, Biochemistry of fermentation, Immunology 370 General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		322
Algae, Physiology of Algae, Physiology of fungi Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 346 370 395		333
Biochemistry, Biochemistry of fermentation, Immunology General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 370 395		
General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather 395		
Instruments used in microbiology and Tanning of leather		
		395
	Biostatistics	424

M.Sc. Program of Ecology

M. Sc. program specifications of Ecology

Department offering the program	Botany Department					
Academic year	2014-2015					
Date of specification approval	08/2014					

A- Basic Information

Program title:	M. Sc. degree in Botany (Ecology)
Program type	Single
Coordinator:	Prof. Kamal Hussein Shaltout
External Evaluator (s):	Prof. Mahmoud El-Baz Younis. Faculty of Science -
	Mansoura University.
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Program References	Bioscience, Egyptian Code of Assessment
Date of Delivery	Every year in September
Review Date	Internal Periodic Review, Summer 2014

B- Professional Information

1. Program aims

This program gives an opportunity to:

- Provide students with the main basic and updated concepts of ecology at advanced level.
- Deliver students with a broad understanding of the fundamental principles of system analysis, vegetation distribution and edaphic factors controlling it.
- Study the vegetation diversity aspects.
- Equip students with IT.

2. Intended Learning outcomes

A. Knowledge and understanding:

By the end of the programme successful students who have attended regularly and completed required work will be able to know and understand of:

- A.1 Understand vegetation ecology
- A2. Evaluate information of plant distribution and factor affecting it.
- A3. Organize and integrate information of plant phytosociology, climatology and geology

B. Intellectual skills:

By the end of the program successful students who have attended regularly and completed required work will be able to:

- B1. Access plant ecology information from a variety of sources and to communicate the principles in a manner appropriate to their study.
- B2. Identify between vegetation and flora of an area.
- B3. Evaluate literatures in plant ecology
- B4. Read and use the literatures with critical understanding, give a clear and accurate account of the subject matter, think independently, formulate arguments and engage in debate.

C. Professional and practical skills:

At the end of this module students should have acquired the following skills:

- C1. demonstrate flora and species distribution.
- C2. analyze chemical and physical characteristics of soil.
- C3. analyze, summarize and integrate information critically from a variety of media.
- D. General and transferable skills:

By the end of the program successful students who have attended regularly and completed the proposed work will be able to:

- D1. Communicate scientific ideas, give oral and poster presentations and work as part of a research team.
- D2. Use databases and library search methods
- D3. Use library resources and other information sources.
- D4. Plan their career.
- 3. Academic standards
- 3.A External references for standards (Benchmarks):

In order to fulfill international standards, our students should acquire

I. Knowledge and Understanding:

Approaches to study and forms of subject knowledge likely to be common to Ecology degree programme will include the following:

knowledge and understanding of the processes and mechanisms of ecosystem from soil to air level, from uptake of energy to its utilization in the community and their environmental benefits.

- engagement with the essential facts, major concepts, principles and theories associated with Ecology.
- understanding of information and data, and their setting within a theoretical framework.
- familiarity with the:
- Classification systems as appropriate.
- Methods of acquiring, interpreting and analyzing of ecological information with a critical understanding of the appropriate contexts for their use through the:
- Study of texts.
- Original papers.
- Reports and data sets.
- Developing knowledge about the diversity of ecosystems and its evolution.
- Knowledge of a range of practical techniques and methodologies, including:
- Data analysis.
- Use of statistics.
- Engagement with current developments in ecology and their applications, and the philosophical and ethical issues involved.
- The applicability of the biosciences (Ecology) to the careers to which graduates will be progressing.
- II. Skills

A. Generic skills

- An appreciation of the complexity and diversity of life processes through the study of plant phytososciaology, flora of the area, soil nutrients and environment, climatic parameters, and the interrelationships between plants and their environment.
- Tthe ability to read and use appropriate literature with a full and critical understanding.
- The capacity to give a clear and accurate account of a subject
- Critical and analytical skills: a recognition that statements should be tested and that evidence is subject to assessment and critical evaluation.
- The ability to employ a variety of methods of study in investigating, recording and analyzing microbiological topics or idea of research
- The ability to think independent, set tasks and solve problems.
- B. Key skills (graduate)

The specific key skills that should be developed in Ecology degree courses are subdivided into:-

1. Intellectual skills

- Recognizing and applying subject-specific theories, concepts or principles. For example:
- The relationship between plant species in each habitat.
- The nature of essential nutrients in the ecosystem
- Analyzing and summarizing information critically, including published research or reports;
- Obtaining and integrating several lines of subject-specific evidence to formulate and test hypotheses;

Applying subject knowledge and understanding to address familiar and unfamiliar problems

2. Practical skills

- Designing, planning, conducting and reporting on investigations. The data may be obtained through:
- Individual.
- group projects.
- Obtaining, recording, collecting and analyzing data using appropriate techniques in the field and/or laboratory, working by themselves or in a group.
- Undertaking field and/or laboratory investigations of living systems in a responsible, safe and ethical manner.
- Preparing, processing, interpreting and presenting data, using appropriate qualitative and quantitative techniques:
- Statistical programmes.
- Spreadsheets.
- Programs for presenting data visually.
- Solving problems by a variety of methods including the use of computers.
- Using the internet and other electronic sources critically as a means of communication and a source of information.

3. Interpersonal and teamwork skills

• Identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles.

- Recognizing and respecting the views and opinions of other team members.
- Negotiating skills.
- Evaluating performance as an individual and a team member; evaluating the performance of others.
- Developing an appreciation of the interdisciplinary nature of science and of the validity of different points of view.

4. Self-management and professional development skills

- Developing the skills necessary for self-managed and lifelong learning (e.g. working independent, time management and organization skills).
- Identifying and working towards targets for personal, academic and career development.
- Developing an adaptable, flexible, and effective approach to study and work.
- 3.B Comparison of provision to external references:

International Academic Standards (NARS)

Although the provision is quite comparable to its benchmark there are a number of points that should be highlighted for the purpose of achieving advancement in the specifications and qualities of the Ecology program at Botany Department, Faculty of Science, Tanta University as follows:

- Search of vegetation distribution in the different habitat, flora of the area, and controlling edaphic conditions.
- Have skill of performing diverse laboratory techniques of plant and ecosystem analysis important in the improvement of environmental ecosystems.
- Furthermore, have skills of performing Laboratory and field investigation of the pollutants.
- Ecology students should acquire proper skills to keep up with the ecological literature and to appreciate the need for life-long continuing education, starting the day after their graduation.
- Students should have the aptitude of critical evaluation, synthesis and interpretation of botanical information and data, production of botany-specific scientific documentation, and presentation of botanical information and arguments clearly and correctly in writing and orally, to both specialist a

4.a.Program duration: Minimum two years.

4.b.Program Structure:

4. b.1. The First Preliminary Year:

All applicants admitted to the master's program are required to study 9 selected theoretical and practical courses approved by the department council from the master courses offered by the department for one academic year. A part of the M.Sc. courses offered by the Botany Department, the student should study a course in English language for a minimum one hour per week. Albeit, students who have taken equivalent English language course may be exampled from it upon the recommendation of the Faculty Council.

No. of hours per week: 6 Lectures and 12 hours practical

The registration for the preliminary year takes place in October, and the final exam. Is held once a year (June) in the date approved by the Faculty Council.

Grade Assessment:

Final Written Exam.60%

Final Practical Exam 40%

60-69 passed, 70-79 good, 80-89 very good, >90% excellent

4. b.2. The second year:

If the student passes the final examination, he/she will be a legible for continuation and registration to carry out research and starts thesis preparation. The thesis could be submitted after one year.

5. Program Contents

N	Code	Course Name	Lecturer						
1	1511	Methods of vegetation analysis, population ecology and germination and advanced studies on the phytosociology	Prof. Dr. Kamal Shaltout Prof. Dr. Mohamed El-Beheiry						
2	1512	Climatology- Advanced studies on soil physics and soil chemistry-Plant Water relations	Prof. Dr. Mohamed nabeih El- Shorbagy Prof. Dr. Ahmed Sharaf El-Din Prof. Dr. Mohamed El-Beheiry						
3	1513	Principles of geology and geological screening	Prof. Dr. Mahmoud Hussein Ashmawy						
4	1514	Precise principles of flowering plant systematic, palynology and flora	Dr. Ragab El-Fahar Dr. Dalia Abd El-Azeem Ahmed						
5	1517	Computer	Prof. Dr. Mohamed El-Awady.						
6	1518	Biostatistics	Prof. Dr. Kamal Shaltout Dr. Mohamed Abdelmonsef						

Course Contents of plant Ecology

Course Name	Code No	Contents
Methods of vegetation analysis, population ecology and germination and advanced studies on the phytosociology	1511	Introduction to methods of vegetation analysis. Community sampling, measuring species quantities. Count plot method and plotless sampling techniques. Mathematical treatment of vegetation data. Direct gradient analysis and ecological diversity. Production ecology, Life tables and simple models, Regulation of plant populations. Demography of some plant populations, Evolutionary ecology. Interactions in mixtures of species. Coexistence and the niche. Life form and Stratification. Quantitative assessment of abundance frequency symbols. Quantitative assessment of abundance. Statistical and sampling methods. Transect and isonomic studies. Vegetation change and plant succession. Casual factors of interspecies associations.
Climatology-Advanced	1512	Part 1 Climatology

^{*&}lt; 60% failed

^{*}Failed students can repeat the course (s) only once.

studios an asil minutes		Air tomporature Atmospheric maisture and anscinitation
studies on soil physics		Air temperature. Atmospheric moisture and precipitation Light. Heat budget of the earth's surface. Temperature
and soil chemistry-Plant		relationships near the ground. Humidity relationships near
Water relations		the ground. Wind relationships near the ground
		Part2 Soil physics and chemistry
		Importance, Definition, Composition and development of
		soil
		Type of soil classification. Soil texture, structure, porosity,
		air, water and living organisms. Soil erosion and
		conservation
		Management of soil physical properties. Soil solution, soil
		acidity, and alkalinity. Soil inorganic compounds.
		Composition and transformation of organic matter.
		Electronic properties of soil. Properties of soil colloids. Soil
		cartography and its importance
		Part3 Plant water relations
		Drought and origin of adaptation to water stress. Low and
		high soil-water potentials. Osmotic regulation and water
		stress in higher plants. Water transport and relationship to
		growth processes. Metabolic responses of plants to water
		deficits. Cell-level metabolic responses. Effect of water
		deficits on metabolism
		Adaptive significance of metabolic responses to water
		deficits
Principles of geology	1513	Earth outer layer, Major structural unit of Earth, Hydrologic
and geological screening		system, Basic concept of physical geology, Geologic
	4544	surveying and Aerology.
Precise principles of	1514	Part 1: Precise principles of flowering plant systematic and
flowering plant		studying flora
systematic, palynology		Introduction to methods of plant taxonomy. Explain the
and flora		different modern methods of plant taxonomy. Identification
		of botanical garden and its importance. Definition of
		herbarium, its role in plant taxonomy and its importance.
		How to construct herbarium? Methods to keep specimens
		in Herbarium. How to use floral books in Identifications
		(Gramineae - Compositae - Crucifereae and Leguminosea).
		Part 2: Palynology and its application
		Identify the mean of palynology. Identification of pollens
		and how they are formed. Types of pollination and Pollen
		morphology. Sporoderm and simple and compound
		apertures. Chemical composition of pollen grain
		Spores of Pteridophyta and evolution of spores and pollens.
		Microfossils and geology. Pollen and taxonomy of
	454-	Angiosperms.
Computer	1517	Visual basic, power point, internet and Photoshop program
Biostatistics	1518	Part one: Statistical definitions, sampling of attributes,
		distributions (Normal, Binomial, Poisson), and tests of
		l -iiC Dt t Al
		significance, Part two: Analysis of variance, experimental
		designs, association between variables, curve fitting and the

Thesis

Thesis is an essential aspect of M.Sc. program, for partial fulfillment of M.Sc. degree requirements. It is a formal written document representing sustained original research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis must meet precise academic standards and will be reviewed and approved by the candidate's supervising professor and external academic review committee.

The thesis should contain at least the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions
- References.

Language of the thesis

The thesis must be written in English language accompanied by a summary in Arabic.

Formation of Examiners Committees

A committee is selected by Botany Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

7-Admission:

An applicant for admission to the master's program should hold Botany B.Sc. degree in science either major with a minimum grade "Good" or double major with a minimum general grade "Good" from any Egyptian or equivalent institute. In addition, all applicants must satisfy the department graduate admission.

8- Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1 Alumni	Questionnaire	
2- Stakeholders (Employers)	Questionnaire	
3- External Evaluator(s)	Report	

Program coordinator:

Prof. Kamal Hussein Shaltout	
Head of Department:Prof. AlaaAbou-Zeid	

Date: 8/2014

M. Sc. program Plant (Ecology) matrix Tanta University, Faculty of Science M. Sc. Course specifications of Ecology

A- Basic Information

Course Title	Methods of vegetation analysis, population ecology and						
	germination and advanced studies on the phytosociology						
Course Code Academic Year Coordinator Other Staff Pre-Requisite Semester	1511 2014/2014 Dr. Kamal Shaltout Dr. Mohamed El-Beheiry GC level Biology or its equivalent Part one: Method of vegetation analysis, population ecology and germination (Two semesters). Part two: Advanced studies on phytosociology (one						
Course Delivery	Lecture Part one (28 x 1h lectures) Part two: (14 x 1h lectures)						
	Practical Part two (14 x 2h practical)						
Parent Department Date of Approval	Botany Department 8. 2014						

B- Professional Information

2. course aims:

Teach students the modern vegetation and plant population sciences and their applications, teach students how to analyze the population changes and their causes throughout the life cycle, achieve a comprehensible form of the too much vegetation data that characterize the modern vegetation science and population ecology and apply statistical tests and multivariate analysis for evaluating the differences, variations and associations between the plant populations and communities.

3. Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the vegetative analysis methods
- A2. Identify the modern vegetation and plant population sciences and their applications
- A3. Explain the population changes and their causes throughout the life cycle.
- A4. Describe the different methods of the community and population analyses.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Apply the statistical tests and multivariate analysis for evaluating the differences, variations and associations between the plant populations and communities
- B2. Analyze the population changes and their causes throughout the plant life cycle.
- B3. Compare the different methods of the community and population analyses

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Use the suitable techniques for studying the plant populations and communities.
- C2. Execute a consultation on the vegetation science and population ecology for the students and researchers of biology.
- C3. Prepare the suitable experimental field and lab designs on the subject of the course and how to analyze the results statistically.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Prepare a research proposal on a topic of the course
- D2. Demonstrate written and verbal communication skills on modern approaches in the vegetation and plant population sciences.
- D3. Prepare an essay on the topics of the course and its application.
- D4. Use databases and library search methods as well as internet sites

3. Contents

Week	Topic (2 hour/week)
	Part one: Plant vegetation, Population ecology and germination (an
	hour/week).
1	Introduction to Methods of Vegetation Analysis
2	Community sampling, measuring species quantities
3	Count-plot method
4	Plotless sampling techniques
5	Mathematical treatment of vegetation data 1
6	Mathematical treatment of vegetation data 2
7	Direct gradient analysis 1
8	Direct gradient analysis 2
9	Ecological diversity 1
10	Ecological diversity 2
11	Production ecology
12	Round-up discussion on the previous topics
13	Partial examination
14	Introduction to Population Ecology
15	Life tables
16	Simple models 1
17	Simple models 2
18	Regulation of plant populations

1
itation
lations.
itions.
od.
1
es.
<i>.</i>
ue.
1

4. Teaching and learning methods

- a. Lectures
- b. Practical training / laboratory
- c. Seminar / Workshop
- d. Class Activity

Prof. Alaa Abou-Zeid

Date: 8/2014

5. Student assessm	ent metl	ıods									
Written final exam		to assess	KU, I								
Practical		to assess	P,T								
Semester work		to assess	1,1								
*KU: Knowledg	e and		ıg. I: Int	ellectual. P:	Professional, T:						
Transferable			-6, -,	, , , , , , , , , , , , , , , , , , , ,	,						
Assessment schedu	le										
Assessment 1	Practio	cal exam	Week	After week 28	3						
Assessment 2	Final e	exam	Week	After week 28	}						
Weighing of assessi	ments										
					¬						
Fina	l-term Ex	kamination		60	%						
Prac	tical Exa	mination		40	%						
Sem	ester wo	ork			%						
Tota	I			100	%						
5. List of reference Course notes	ees										
Course notes and Botany.	Labora	tory manual a	uthorized	by the Council	l of Department of						
Essential books (tex	t books)										
Mueller-Dombois, E. & Ellenberg, H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, New York. Silvertown, J. 1987. Introduction to Plant Population Ecology. Longman Singapor Publishers (Pte) Ltd, Singapore.											
Recommended boo Kent, M. & Coker,		6 Vegetation	Description	n and Analysis	John Wiley &						
Sons, New York.	1.133	o. Vegetation	Description	r and Anarysis.	John Wiley &						
6. Facilities requi	red for	teaching and le	arning								
Computer Present											
Library											
Course coordinator	:										
Prof. Kamal Shaltou	t										
Head of Department:											

Course Contents - Course ILOs Matrix

Course code:1511, course title: Plant vegetation analysis, population ecology and germination and Advanced studies in plant phytosociology.

Course	Breetical Wee							elle		· -	actio		Tranferrab			le
Contents	Practical	ks	A	A	A	Α	В	В	В	c	С	С	D.	D	D	D
Part one:										Ĺ		Ĺ			Ī	
Introducti		1	✓	✓	✓	✓										
Communit		2	✓	✓	✓	✓	✓	✓	✓						İ	✓
	Determinatio									✓	✓					
	n of															
	germination rate of															
	different Of															
Count-plot		3	✓	✓	✓	✓							✓	✓	✓	✓
	Determina									✓	✓	✓				
	tion of															
	germinatio															
Plotless		4														✓
<u> </u>	Determina									✓	✓					
	tion of															
	natality		_	_	_								/		-	_
Mathemat	.	5, 6	✓	✓	✓	✓				/	/		✓	✓	✓	✓
	Determina									√	√					
	tion of															
Direct	natality	7, 8	✓	✓	√	✓	√									√
Direct	Study of	7, 6								√	√	√				
	the															
	nroducvivi															
Ecological		9,						✓	✓						✓	✓
	Study of									✓	✓	✓				
	the															
Production	-	11	√	√	√											√
	Study the									√		✓				
	effect of															
Introducti		12	✓	✓	✓	✓	✓	✓	✓						✓	✓
	Study the										✓	✓				
Life tables	effect of	12	✓	✓										-		√
Life tables	Determina	13	 	<u> </u>							✓	√	✓		 	_
	tion of the											*	•			
	minimal															
Simple	mmmal	14,1	√	√												✓
•	Measure	,									✓	✓	✓			
	of plant															
	density			L			L		L	L		L	L	L		L
Regulation		16	✓	✓	✓	✓				✓				✓	✓	✓
	Measure										✓	✓	✓			
	of plant															
Domogras	doncity	17					-		✓	✓			-	-	-	✓
Demograp	Dotormina	17,							*	*	✓	✓				–
	Determina										*	•				
	tion of															
Colonial	nlant	19	√	√	√	√	√	√	√							√
Coloniai	l	117		1	<u> </u>				1	1	L	1	l	1	1	L

	· · ·	ı	1	ı			1	ı		ı				ı		
	Determina										V	V				
	tion of															
	adequacy															
Evolutiona		20,				✓	✓	✓	✓							✓
	Determina											✓	✓			
	tions of															
	plant															
Interaction	Diaiit	22				√	√	√	√					√		
meraction	Measurem	22										√	√			
												,	Ť			
	ents of															
Cassistana	nlant	22				√	√	√	√		√	√	√	√		
Coexistenc		23				•	v	v	•				V	v		
	Determina										✓	✓				
	tion of															
	species															
Part two:																
Introducti		1	√	√										✓		
Life forms		2, 3	√	√						√				√		
LITE TOTTIIS	Assessmen	2, 3		ΙĹ						<u> </u>	√	√	√	<u> </u>		
											•	•	•			
	t of degree															
Horizontal	~t	4	√				√									
Tiorizontai	Classificati	4		Ė	·	·		<u> </u>	Ť	<u> </u>	√	√	√			
											•	•	•			
	on of															
	vegetation															
Subjective		5	√	✓						√	✓	✓	√	√		
Subjective	Classificati										√	√	√			
													·			
	on of															
	vegetation		√	✓	√	✓	√	√						√		
Quantitati		6	v	V	V	V	v	v						v		
	Determina										✓	✓	✓			
	tion of															
	degree of															
Statistical		7, 8	✓	✓						✓				✓		
	Determina										✓	✓	✓			
	tion of															
	degree of															
Transect	TIENTER ()I	9	√	√	✓	√								√	√	√
Tansect	Classificati		l -				l -	 		 		√	✓			
												•				
	on of															
	vegetation	40	√	√			 	-		/				√	√	
Vegetation	_	10,	V	V						✓				*	*	✓
	Classificati										✓	✓	✓			
	on of															
	vegetation		L				L	L		L		L			<u> </u>	<u></u>
Causal		12	✓	✓	✓	✓	✓	✓	✓	✓						✓
	Revision			1							✓	✓	√			
Round-up		13	√	√						√						√
discussion			L	L	L	L	L	L	L	L		L			L	
Thesis			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	V	√	✓
1		1	1	1		1	1	1	1	1						1

5.2 Learning and Teaching Methods

						Cour	se ou	ıtcon	nes II	.Os						
Learing Method		а	vled nd stan	ge ding		ellect Skills			ofess an ract Skil	ical			al an erab IIs			
	A1	A2	А3	A4	B1	B2	В3	C1	C2	C3	D1 D2 D3 D					
Lecture	٧	٧	٧	٧	٧	٧	٧									
Discussion																
(Brain Storming)																
Self-learing																
(Essay)																
Field Trips																
Practical				·				٧	٧	٧			٧			

5. 3. Assessment Methods

Assessment Methods						Cou	ırse	out	con	nes ILO	S				
		a	vled nd stan	ge ding	_	elle Skil		al		ofessi and Praction Skill	cal		_	al a erak ills	-
	A1	A2	А3	A4	B1	B2	В3	В4	C1	C2	C3	D1	D2	D3	D4
Written final exam	٧	٧		٧		٧	٧								
Practical									✓	✓	٧	✓	✓	✓	٧

Course coordinator: Prof. Kamal Hussein Shaltout

Head of Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Ecology

A- Basic Information

Course Title	Precise principles	of flowering plant systematic, palynology and flora
Course Code	1514	
Academic	2014/2014	
Coordinator	Dr. Dalia Abd El	-Azeem Abd El-Azeem Ahmed
Other Staff	-	
Pre-Requisite	GC level Biolog	v or its equivalent
Semester	Part one: Preci	ise principles of flowering plant systematic and Flora
	(one semesters	s).Part two: Palynology and its applications (one
	semester).	
Course	Lecture	Part one (14 x 1h lectures)
Delivery		
•	Practical	Part one (14 x 2h practical)
Parent	Botany Departi	ment
Date of	8. 2014	

B- Professional Information

4. course aims:

Teach the students the historic development of taxonomy, basic systematic and evolutionary units of plant classification, concepts of species definition, and associated areas of plant diversity, speciation, ecotypic variation and Teach students the different forms of palynomorphs, particularly the palynomorphs of pollen grains, and its uses in studying plant taxonomy, evolution of plant vegetation and in economic geology.

2. Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the history of the development of the views of species.
- A2. Recognize the basic and evolutionary unit of plant taxonomy
- A2. Explain the pros and cons of the molecular and morphological classification
- A3. Identify the different concepts of species; advantage and disadvantages
- A4. Define the relation between ecotype variation and genetic diversity
- A5. Explain the structure of pollen grains, its importance, its distribution in geological information and its uses in studying the plant evolution and in

economic geology.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Demonstrate the principles underlying plant classification, genetic change and evolution. .
- B2. Select appropriate characters for plant classification.
- B3. Illustrate the principles underlying using palynomorphs of pollen grains in plant taxonomy, vegetative analysis and economic geology.
- B4. Compare between the molecular and morphological classification
- B5. Critically evaluate the primary literature in particular areas of plant systematics

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Examine the different forms of pollen grains.
- C2. Use the microscope for examining the structure of pollen grains.
- C3. Examine the morphological traits of plants.
- C4. Collect plants from different populations of plant species and identify it.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Prepare a research proposal on a topic of the course
- D2. Demonstrate written and verbal communication skills on modern approaches in plant classification and construction of phylogenetic trees
- D3. Use the internet to prepare an essay on the topics of plant systematics and evolution
- D4. Use databases and library search methods as well as internet sites

3. Contents

Week	Topic
	Part 1: Precise principles of flowering plant systematic and studying flora
	(an hour/week).
1	Introduction to methods of plant taxonomy.

١٥	- -
2	Explain the different modern methods of plant taxonomy.
3	Identification of botanical garden and its importance.
4	Definition of herbarium, its role in plant taxonomy and its importance
5	How to construct herbarium?
6	Methods to keep specimens in Herbarium
7	Round-up discussion on the previous topics
8	How to use floral books in Identifications (accumulative key)
9	How to use floral books in Identifications (numerical key)
10	How to use floral books in Identifications of Gramineae
11	How to use floral books in Identifications of Compositae
12	How to use floral books in Identifications of Crucifereae
13	How to use floral books in Identifications of Leguminosea.
14	Assesment
	Part 2: Palynology and its application (an hour/week).
1	Introduction
2	Identify the mean of palynology.
3	Identification of pollens and how they are formed.
4	Chemical Composition of Spores and Pollen – importance of pollen grains
5	Types of pollination
6	Composition of pollen grains and Sporoderm (spore wall)
7	Simple and Compound apertures – Spores of Pteridophyta
8	Pollen Morphology and Taxonomy of Angiosperms
9	Fossil Palynology
10	Pollen analysis
11	Distribution and Evolution of spores and pollens
12	Microfossils and Geology
13	Pollen Germination in the Lab.
14	Pollen Preparation
	Practical Lessons
	Part 1: Precise principles of flowering plant systematic and studying flora
	(2 hours/week).
1	Prepartion of botanical herbarium
2	Family:Chenopodiaceae
3	Family:Cruciferae
4	Family: Leguminosae
5	Family: Compositae
6	Family: Gramineae
7	Aquatic weeds
8	Field weeds
9	Street weeds
10	Ornamental trees
11	Fruit trees
12	Crops and vegetables
13	Endemic plants
14	General revesion Part 2: Palynology and its application (2 hours/week).
1	, , , , , , , , , , , , , , , , , , , ,
1	How to collect pollens
2	Methods of pollens collections
3	Field work to collect pollen
4	Field work to collect pollen
5	Field work to collect pollen
6	Preparing pollen slide

10 How to examin 11 Identify the po 12 Identify the po	n slide e the pollen slic e the pollen slic llen type llen type y pollen morph	de										
a. Le				\boxtimes								
	actical training / l			\boxtimes								
	minar / Workshop	p		Ш								
d. Cl	ass Activity			-								
Written final exam	to assess	KU, I										
vviitteii iiilai exaiii	10 833633	κο, ι										
Practical	to assess	P,T										
Practical to assess P,T Semester work to assess - *KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable Assessment schedule												
Transferable	d Understandi	ng, I: In	tellectu	al, P:	Professional, T:							
ssessment 1 Practical	exam		Week	After v	week 14							
ssessment 2 Final exa	m		Week	After v	week 14							
Weighing of assessments			ļ									
Final-term	Examination			60	%							
Practical E	xamination			40	%							
Semester	work				%							
Total				100	%							
6. List of references Course notes	\$		L									
Course notes and Labo Botany.	ratory manual	authorized	by the	Council	of Department of							
Essential books (text book	s)											
- Michael Simpson. Plant	Systematic Acade	mic Press (S	eptembe	er 16, 200	05)							
- Chester A. Arnold . An Ir	troduction To Pal	leobotany (P	aperbacl	k - Mar 1	.5, 2007).							

Amazon.com

Recommended books

- Landscaping with Native Plants of Minnesota by Lynn M. Steiner (Paperback Mar
- Michael Simpson, Plant Systematics .San Diego State University, California, U.S.A

Web sites

http://en.wikipedia.org/wiki/History_of_plant_systematics

http://www.plantsystematics.org/

http://www.sci.sdsu.edu/plants/plantsystematics/

http://www.ibiblio.org/botnet/glossary/vasc.html

http://www.flmnh.ufl.edu/paleobotany/

http://www.economicexpert.com/a/Paleobotany.htm

7. Facilities required for teaching and learning

Generic resources, such as the library.

Compound Microscope

Electronic copies of past exam papers and example assessments.

Computer Aided, such as E-mail, online conference, data show.

Digital camera for images collections as a tool for active learning.

Course coordinator:

Dr. Dalia Abd El-Azeem Abd El-Azeem Ahmed

Head of Department:

Prof. Alaa Abou-Zeid

Date: 8/2014

Course Contents – Course ILOs Matrix

Course code: 1514, course title: Precise principles of flowering plant systematics, palynology and flora

Course	Practical																			
Contents		Veel	I	Knov unde					Inte	ellec	tual			Prac	tical		Tr	anfe	rrab	le
			A 1	A 2	A 3	A 4	A 5	B 1	B 2	В	B 4	B 5	C 1	C 2	C 3	C 4	D 1	D 2	D3	D4
Introduct ion to methods of plant taxonom y.		1	✓	√		✓	✓	✓	✓			✓					✓	√	✓	✓
	Prepartio n of botanical herbariu m															✓				
Explain the different modern methods of plant taxonom y.		2	~	√			✓	✓	✓			✓							~	✓
	Identificati on of Family: Chenopodia ceae															√				
Identifica tion of botanical garden and its importan		3	✓	√			√					✓							√	✓

ce.																		
	Identific ation of Family: Legumin osae												✓	✓				
Definition of herbarium, its role in plant taxonomy and its importance		4	~	✓			~	~			~						*	✓
	Identific ation of Family: Composit ae													√				
How to construct herbariu m?		5	√	√		√	√				✓					✓	>	√
	Identific ation of Family: Graminea e													√	√			
Methods to keep specimen s in Herbariu m		6	√	√		✓	√		✓	✓	✓							✓
	Aquatic weeds											√		✓				
How to use floral books in Identifica tions (accumul ative key)		7	√	√			√	√	√		√						*	√

	Field									1			✓	√		√				
	weeds																			
																				,
How to use floral		8	✓	✓				✓	✓			✓							✓	✓
books in																				
Identifica																				
tions																				
(numeric																				
al key)																				
,																				
	Street														√	√				
	w e e d s																			
How to		9	✓	√				✓	✓			√					√	✓	✓	√
use floral																				
books in																				
Identifica																				
tions of																				
Graminea																				
е																				
	Orname														√	✓				
	ntal														•	•				
	trees																			
	trees																			
How to		1					✓	✓			✓	✓						✓	✓	✓
use floral		0																		
books in																				
Identifica																				
tions of																				
Composit																				
ae																				
	Fruit														✓	√				
	trees																			
How to		1	✓			✓	✓		✓	✓							✓	✓	✓	√
use floral books in		1																		
Identifica																				
tions of																				
Crucifere																				
ae																				
	Crops												√			√				
	and																			
	vegetab																			
	les																			
How to		1	✓	√	√					√	√	✓					√	✓	√	√
use floral		2																		
books in																				
Identifica																				
tions of																				

Legumino																				
sea.																				1
	Endemi c												✓			✓				
	plants																			1
																				1
Part 2: Pal	ynology and	its	appli	cati	on (2	2 ho	urs/	weel	k).											
Introduct		1	√	√								√					√	✓	✓	✓
ion																				
													✓		✓					
	How to collect												*		•					1
	pollens																			
Identify		2	✓	✓			✓					✓							✓	✓
the mean of																				
palynolog																				1
у.																				1
	Methods												√	√	√					
	of																			1
	pollens																			ì
	collectio																			
	ns																			ì
Identifica		3	√	✓			✓		✓	√	√	√							✓	✓
tion of																				
pollens																				
and how they are																				
formed.																				ì
	Field work to												✓	✓	√					ì
	collect																			
	pollen																			ì
Chemical Composit		4	✓	✓			✓	✓	✓			✓							✓	✓
ion of																				
Spores																				
and																				1
Pollen –																				1
importan ce of																				1
pollen																				1
grains																				ì
	Field	-			_								√	√	√					
	work to																			1
	collect																			1
	pollen																			1
	I																			

Types of		5	✓	√		√	√	√	✓	√					√	√	√
pollinatio n																	
	Field work to collect pollen										✓	√	✓				
Composit ion of pollen grains		6	✓	√			~	√	✓	√							√
	Preparing pollen slide										√	√	√				
Sporoder m (spore wall)		7	√	√		√	✓	√		√						✓	√
	Preparing pollen slide										√	√	√				
Simple and Compoun d apertures - Spores of Pteridop hyta		8	✓	✓			~	✓	✓	✓						*	~
	Preparing pollen slide										√	√	√				
Pollen Morpholo gy and Taxonom y of Angiospe rms		9		✓		√	✓	√		√				√	√	*	√
	How to examine the pollen slide										√	√	√				

E 1	1	1 4	1									· /	1	1	1	1	1			_
Fossil		1					✓	√			~	•						√	~	✓
Palynolog y		0																		
	How to examine the pollen slide												√	√	√					
Pollen analysis		1				✓	√		✓	✓	√						√	√	✓	√
	Identify the pollen type												√	√	√					
Distributi on and Evolution of spores and pollens		1 2	√	√	√					✓	√	√					√	√	✓	~
	Identify the pollen type												✓	√	√					
Microfoss ils and Geology		1 3	√	√	√			√	√	√									√	√
	Identify plant by pollen morphol ogy												√	✓	√					
Pollen Germinat ion in the Lab.		1 4	√				√										√	√	√	√
	Revision												✓	√	√	√				
Pollen Preparati on																				
Assessm ent																				

5.2 Learning and Teaching Methods

							(Cou	rse	out	com	ies I	LOs					
Learing Method				ge a and	and ing	Intellectual Skills					Professional and Practical Skills				General and Transferable Skills			
	A1	A2	А3	Α4	A5	B1	B2	В3	В4	В5	C1	C2	C3	C4	D1	D2	D3	D4
Lecture	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧								
Discussion																		
(Brain																		
Storming)																		
Self-learing (Essay)																		
Field Trips																		
Practical											٧	٧	٧	٧			٧	

5. 3. Assessment Methods

							J. A	100	000		, 11 t	1110	722 0 42	· ·				
							C	our	se c	ut	com	es IL	.Os					
Assessment Methods	Knowledge and Understanding						Intellectual Skills					Professional and Practical Skills				General and Transferable Skills		
	A1	A2	А3	Α4	A5	В1	B2	В3	В4	B5	C1	C2	СЗ	C4	D1	D2	D3	D4
Essay Question	٧	٧		٧	٧	٧	٧	٧	٧									
MCQ																		
Student																		
Activity																		
Practical											٧	٧	٧				٧	

Course ordinator: Dr Dalia Abd El-Azeem Ahmed

Head of Botany Department: Dr Alaa Abou Zeid

M. Sc. Course specifications of Ecology

A- Basic Information

Title: Principles of geology and geological	Code: 1513
screening	
Hours: 2	Lecture: 2
Tutorial:	Practical:
Total:	
Coordinator	Prof. Mahmoud Hussein Ashmawy
Other Staff	Pro.f Nader H. El Gendy
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	Lectures:14 x 1h lectures
	Practical: 14 x 2h Sessions

-Academic Year : 2014-2015

B- Professional Information

Course aims:

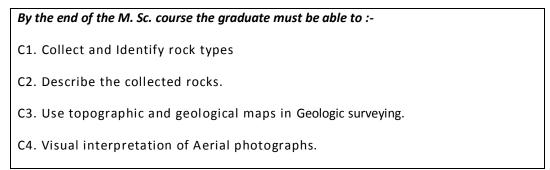
Provide students with the basic principles of Geology, Enable students to read aerial photographs and Teach students how to observe and collect data and samples in the field.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify types of land forms and their related processes.
- A2. Recognize the necessary equipments required in field mapping.
- A3. Discuss the visual interpretation of aerial photographs.
- A4. Explain the different concepts of physical geology


b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

B1. Classify the landform types.

B2. Illustrate the visual interpretation of aerial photographs.
B3. Demonstrate the different concepts of physical geology
B4. Analyze the collected data from aerial photographs

c- Professional and practical skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Use the internet/electronic resource.
- D2. Use PC to write and plot date.
- D3. Make use of IT.
- D4. Write a photo-interpretation report.

3. Contents

Week	Topic
1	Earth outer layer
2	Earth outer layer
3	Major structural unit
4	Major structural unit
5	Hydrologic system
6	Hydrologic system
7	Basic concept of physical geology
8	Basic concept of physical geology
9	Basic concept of physical geology
10	Geologic surveying
11	Geologic surveying
12	Aerology
13	Aerology
14	Aerology

4. Teaching and learning methods

a.	Lectures	\boxtimes
b.	Practical training / laboratory	\boxtimes
c.	Seminar / Workshop	
d.	Class Activity	-

	04 1 4	4	41 1
e.	Student	assessment	methods
·-	Stuutht	assessment	memous

Written final exam	to assess	KU, I
Practical	to assess	Р,Т
Semester work	to assess	-

Assessment schedule

Assessment 1	Practical exam	Week	15
Assessment 2	Final exam	Week	16

Weighing of assessments

Final-term Examination	60	%
Practical Examination	40	%
Semester work	-	%
Total	100	%

f. List of references

Course notes

- Course notes and Laboratory manual authorized by the Council of Department of Botany

Essential books (text books)

- Basic concept of physical geology.
- Manual of field geology
- Remote sensing with special emphasis on photography.

Recommended books

- Earth dynamic systems.

Web sites

- International journal of remotes sensing.
- Egyptian journal of remote sensing and space sciences.

g. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computer Presentation and Writing Boards
- Microscopes; Compound microscope.
- Microscopic Anatomical Preparations.
- Live plant Morphological Samples
- Library

Course coordinator:

Prof. Mahmoud Hussein Ashmawy

Head of Department:

Prof. Alaa Abou-Zeid

Course Contents - Course ILOs Matrix

Course code:1513, course title: Principles of geology and geological screening

Course Contents	Wee ks																				
			Knov unde					Int	ellect	tual			Pı	ractio	cal		Tranferrable				
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5
Earth outer layer	1	√	√	√	√																
Earth outer layer	2	√	√				√								√					√	
Major structura I unit	3	√									✓	√						√	✓	√	
Major structura I unit	4	√					√	√	√					√	√		√			√	
Hydrolog ic system	5	✓	✓				✓	√				✓	✓						√	√	
Hydrolog ic system	6			√	✓						√	√			√		✓			√	
Basic concept of physical geology	7	√	√	√	√						√	√	√	✓	✓				√	√	
Basic concept of physical geology	8	√	√	√	√		√				√				√		√	√	√	√	
Basic concept of	9	√	√				√		√	√	√	√									

physical geology																		
Geologic surveying	10	√	√	√	✓	✓								√	√	√	✓	
Geologic surveying	11	✓				✓	✓	✓				✓	✓				√	
Aerology	12	√	√	√	√	√										√	✓	
Aerology	13	√	√	√	√	✓	✓	√	√						√	√	√	
Aerology	14	√	√						√	√	√			✓	√	√	✓	
Assess ment																		

Course coordinator: Prof. Mahmoud Hussein Ashmawy

Head of Botany Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Ecology

A- Basic Information

Course Title	Climatology- Advanced studies on soil physics and soil							
	chemistry-Plant Water relations							
Course Code	1512							
Academic Year	2014/2014							
Coordinator	Prof. Ahmed Sharaf El-Din							
Other Staff	Prof. Kamal Shaltout, Prof Mohamed nabeih El-Shorbagy							
Pre-Requisite	GC level Biology or its equivalent							
Semester	Part one: General and micro-climatology (one semesters).							
	Part two: Advanced studies on soil physics and soil chemistry							
	(two semester)							
	Part three: plant-water relation (one semester)							
Course Delivery	Lecture	Part one (14 x 1h lectures)						
		Part two: (28 x 1h lectures)						
		Part throat (14 v1 blactures)						
	Practical	Part one (14 x 2h practical)						
		Part two (28 x 2h practical)						
		Part three (14 v 2h practical)						
Parent	Botany Department							
Date of	8, 2014							

B- Professional Information

Course aims:

Teach students the soil as a vital component of the ecosystem, Apply statistical tests and multivariate analysis for evaluating plant populations and communities, Illustrate the link between the soil characters and the distribution of the plant populations and communities, Illustrate the effect of the climate on the abiotic (e.g. soil) and biotic (e.g. plants) components of the ecosystem, explain the soil-water relationships, explore the adaptive significance of metabolic responses to water deficits, and analysis of soil, climate and water characteristics in a certain habitat.

2. Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the soil, climate and water characteristics for evaluating their effects on plant populations and communities.
- A2. Recognize the modern aspects of the soil, climate and water relation sciences and their applications

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Analyze the soil, climate and water characteristics for evaluating their effects upon the plant populations and communities.
- .B2. Correlate studies of the atmosphere, weather and climate and their effect upon the vegetation.
- B3. Illustrate the recent principles and approaches for the study of plant soil and water relations.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Use suitable techniques for studying the physics and chemistry of the soil, climate and water relations.
- C2. Prepare suitable experimental field and lab designs on the subject of the course and to analyze the results statistically.
- C3. Design a filed experiment that correlates soil and water analyses, and climatology.
- C4. Describe the different methods of soil, climate and water-relation analyses and their use in biological research.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Prepare a research proposal on a topic of the course
- D2. Demonstrate written and verbal communication skills on modern approaches in the soil, climate and water-relation sciences.
- D3. Prepare an essay on the topics of the course and its application.
- D4. Use databases and library search methods as well as internet sites

3. Contents

Week	Topic							
	Part one: General and micro-climatology (an hour/week)							
1	Air Temperature							
2	Atmospheric moisture and precipitation 1							
3	Atmospheric moisture and precipitation 2							
4	Light							
5	Heat Budget of the earth's surface 1							

۱ ،							
6	Heat Budget of the earth's surface 2						
7	Temperature relationships near the ground 1						
8	Temperature relationships near the ground 2						
9	Humidity relationships near the ground 1						
10	Humidity relationships near the ground 2						
11	Wind relationships near the ground 1						
12	Wind relationships near the ground 2						
13	Round-up discussion on the previous topics						
14	Partial examination						
	Part two: Advanced studies on soil physics and soil chemistry (An hour/week)						
1	Introduction for soil definition						
2	Composition and development of soil						
3	Importance of Soil						
4	Types of soil classification						
5	Soil texture						
6	Soil Structure						
7	Soil porosity, air and water						
8	Round-up discussion on the previous topics						
9	Partial examination						
10	Soil living organisms						
11	Soil erosion						
12	Soil conservation						
13	Management of soil physical properties						
14	Soil solution						
15	Soil acidity and alkalinity						
16	Soil inorganic compounds						
17	Round-up discussion						
18	Partial examination						
19	Composition and transformation of organic matter 1						
20	Composition and transformation of organic matter 2						
21	Electronic properties of soil 1						
22	Electronic properties of soil						
23	Properties of soil colloids						
24	Soil cartography						
25	Importance of soil cartography						
26	Round-up discussion on the previous topics						
27	Partial examination						
28	Assessement						
	Part three: plant-water relation						
1	Introduction for plant water relation						
2	Definition of Drought and its reasons						
3	Drought and Origin of Adaptation to Water-Stress						
4	Low and high soil-water potentials						
5	Osmo regulation in higher plants						
6	Water stress in higher plants						
7	Water transport and relationship to growth processes						
8	Metabolic responses of plants to water deficits						
9	Cell-level metabolic responses						
10	Effects of water deficits on metabolism 1						
11	Effects of water deficits on metabolism 2						
12	Adaptive significance of metabolic responses to water deficits.						
13	Round-up discussion on the previous topics						
14	Assessement						
14	ASSESSEMENT						

ı										
		Practical Lessons								
		Part one: General and micro-climatology (2hours/week)								
	Lab.1	Introduction of climatology								
	Lab. 2	Demonstration of the instruments of climatological factors(temperature)								
	Lab. 3	Demonstration of the instruments of climatological factors (moisture)								
	Lab. 4	Demonstration of the instruments of climatological factors (wind)								
	Lab. 5	Demonstration of the instruments of climatological factors (atmospl								
	Lab. 6	Demonstration of the instruments of climatological factors (Rains)								
	Lab. 7	Identification of climatologically stations and affectivity of rainfall 1								
	Lab. 8	Identification of climatologically stations and affectivity of rainfall2								
	Lab. 9	Visit to Tanta climatologically station 1.								
	Lab. 10	Visit to Tanta climatologically station 2.								
	Lab. 11	Round-up discussion on the previous labs.								
	Lab. 12	Revision								
	Lab. 13	Examination								
		Part two: Advanced studies on soil physics and soil chemistry (2 hours/week)								
	Lab. 1	Measurement of water flow in soil by capillarity 1								
	Lab. 2	Measurement of water flow in soil by capillarity 2								
	Lab. 3	Determination of soil moisture contents 1								
	Lab. 4	Determination of soil moisture contents 2								
	Lab. 5	Determination of apparent density, real density and porosity of soil 1								
	Lab. 6	Determination of apparent density, real density and porosity of soil 2								
	Lab. 7	Assessment of mechanical analysis of soil 1								
	Lab. 8	Assessment of mechanical analysis of soil 2								
	Lab. 9	Determination of organic matter 1								
	Lab. 10	Determination of organic matter 2								
	Lab. 11	Preparation of soil extract (Soil solution)								
	Lab. 12	Determination of Hydrogen ion activity 1								
	Lab. 13	Determination of Hydrogen ion activity 2								
	Lab. 14	· · ·								
	Lab. 15	Determination of total soluble salts (EC) 2								
	Lab. 16	Determination of soluble chlorides (Cl ⁻) 1								
	Lab. 17	Determination of soluble chlorides (Cl ⁻) 2								
	Lab. 18	Determination of soluble carbonates (CO ₃ -) and bicarbonates (HCO ₃ -) 1								
	Lab. 19	Determination of soluble carbonates (CO ₃ -) and bicarbonates (HCO ₃ -) 2								
	Lab. 20	Revision								
	Lab. 21	Practical exam								
	4.	. Teaching and learning methods								
		2. Lectures								
		3. Practical training / laboratory								
		4. Seminar / Workshop								
		5. Class Activity -								
	5.	. Student assessment methods								
	Writte	en final exam to assess KU, I								
	Practi	cal to assess P,T								
	Seme	ster work to assess -								
	*KII-	Knowledge and Understanding, I: Intellectual, P: Professional, T:								
	110.	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.								

Transferable
Assessment schedule

Assessment 1	Practical exam	Week	After week 14 and 28
Assessment 2	Final exam	Week	After week 28

Weighing of assessments

Final-term Examination	60	%
Practical Examination	40	%
Semester work	-	%
Total	100	%

6. List of references

Course notes

Course notes and Laboratory manual authorized by the Council of Department of Botany

Essential books (text books)

- Zonn, S. V. 1986. Tropical and Subtropical Soil. Mir Publishers, Moscow.
- Barry, R. G. and Chorley, R. J. 1972. Atmosphere, Weather and Climate. Butler & Tanner Ltd, London.

Recommended books

- Slavik, B. 1974. Methods of studying plant water relations. Publishing Home of the Czechoslovake Academy of Sciences.
- Stoutjesdijk, Ph. And Barkman, J. J. 1987. Microclimate, Vegetation and Fauna. Opulus Press AB, Knivsta.

Web sites

http://www.rothamsted.bbsrc.ac.uk/notebook/courses/guide/
http://www.ncbi.nlm.nih.gov/
http://us.expasy.org/

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computer Presentations and Writing Boards
- Library

Course coordinator:

Prof. Ahmed Sharaf El-Din

Head of Department:

Prof. Alaa Abou-Zeid

Date: 8 / 2014

Course Contents – Course ILOs Matrix

Course code: 1512, course title: Climatology- Advanced study of soil physics and Soil chemistry-Plant Water relations

Course Contents	Practical Lessons	We ks	Knowledge and understandi			Prac	ctical		Т	ranfe	errabl	e			
Part one: Gen	 eral and micro-			ng	В	В	В	С	С	С	С	D	D	D	D
	(an hour/week)		A1	A2	1	2	3	1	2	3	4	1	2	3	4
Air Temperatur e		1	√	~	√									✓	
	Introduction of climatology								✓						
Atmospheri c moisture and precipitatio n 1,2		2,3					✓					✓	✓	√	~
	Demonstration of the instruments of climatological factors(temperat ure)								✓	✓					
Light		4			✓	✓	✓					✓	✓	✓	✓
	Demonstration of the instruments of climatological factors (moisture)								✓	✓					
Heat Budget of the earth's surface 1,2		5,6			✓	✓						√	√	√	✓
	Demonstration of the instruments of climatological factors (wind)								✓	✓					
Temperatur e relationship s near the ground		7,8	✓	✓	✓								✓		
	Demonstration of the instruments of climatological factors (atmospheric pressure)								√	√					
Humidity relationship s near the		9,10	✓	~	✓								✓		

ground 1,2						1		1	1		1	1		
ground 1,2	Demonstration			+										
	of the													
	instruments of							✓	✓					
	climatological													
	factors (Rains)													
Wind														
relationship		11,1				1					1	1	✓	1
s near the		2												
ground. 1,2														
	Identification of													
	climatologically stations and							✓	1	1				
	affectivity of							•	•	•				
	rainfall 1, 2													
	Visit to Tanta													
	climatologically							✓	✓	✓				
	station 1,2													
	anced studies on													
soil physics														
	An hour/week)													
Introduction		1			,									
for soil			✓	✓	✓									
definition	Measurement of													
	water flow in													
	soil by									✓	✓			
	capillarity 1													
Composition	- apmanty 1			1										
and				,	,									
developmen			✓	✓	✓									
t of soil														
	Measurement of													
	water flow in									√	1			
	soil by													
	capillarity 2													
Importance			✓	✓	✓	✓								
Soil	Dotormination			1										
	Determination of soil moisture							√	✓		✓			
	contents 1								•		•			
Types of soil	contents 1		-	1		-						<u> </u>		-
classification			✓	✓	✓	✓					✓	✓	✓	✓
	Determination													
	of soil moisture							✓	✓		✓			
	contents 2			L			L							L
Soil texture			✓	✓	✓	✓					✓	✓	✓	✓
	Determination													
	of apparent									,				
	density, real							✓	✓	✓	✓			
	density and													
Soil	porosity of soil 1			-										
Structure			✓	✓	✓	✓					✓	✓	✓	✓
Structure	Determination													
	of apparent													
	density, real							✓	✓	✓	✓			
	density and						1		1	i .	1			1
	density and porosity of soil 2													
Soil porosity,														
Soil porosity, air and			✓	✓	✓	✓					√	✓	✓	✓

	D-+	1	1	1	1				1					1	1
	Determination														
	of apparent								1	✓	1	1			
	density, real								'	•	•	•			
	density and														
	porosity of soil														
Round-up															
discussion															
on the															
previous															
topics															
Partial															
examination															
Soil living				✓	1	1	✓					✓	✓	1	√
organisms				•	'	,	•					•	*	*	*
	Assessment of														
	mechanical							✓	✓	✓	✓				
	analysis of soil 1														
Soil erosion	,			✓	√							√			✓
	Assessment of			1											
	mechanical							✓	✓	✓	✓				
	analysis of soil 2														
Soil	anarysis or son 2														
conservation				✓	✓							✓			✓
COLISEI VALIOIT	Determination		-	1	+	-	-	-	 	-	 - 	-	 		
	of organic							✓	1	1	1				
	matter 1							•	*	•	•				
N 4=	matter 1														
Managemen															
t of soil			✓	✓	✓	✓	✓					✓			✓
physical															
properties															
	Determination								١.						
	of organic							✓	✓	✓	✓				
	matter 2														
Soil solution					✓	✓	✓					✓			✓
	Preparation of														
	soil extract (Soil							✓	✓	✓	✓				
	solution)														
soil acidity															
and					✓	✓	✓					✓			✓
alkalinity															
,	Determination														
	of Hydrogen ion							✓	✓	✓	✓				
	activity 1														
Soil				1	1										
inorganic					1								1	1	√
compounds					1								•		
compounds	Determination			<u> </u>	1				 		 				_
	of Hydrogen ion							1	✓	1	1				
	activity 2								•		•				
Dound	activity &			 	1	-			-				-		
Round-up															ĺ
discussion				<u> </u>	1										
Partial															ĺ
examination				ļ	1				ļ				<u> </u>		
Compositio															
n and															
transformat			✓	✓	✓	1	1					1			
ion of															
organic															ĺ
matter 1, 2															
	Determination														
	of total soluble							✓			✓				
	salts (EC) 1		L		L	L	L	L	L	L	L	L	L	L	L

	Τ	ı	ı	T	1	1					1	1			
Electronic													_	,	_
properties				✓	✓							✓	✓	✓	✓
of soil 1,2															
	Determination														
	of total soluble							✓			✓				
	salts (EC) 1														
Properties															
of soil				✓	1	1	1					1	1	1	1
colloids				•	•	•	•							•	•
conoids															
	Determination														
	of soluble							✓			✓				
	chlorides (Cl ⁻) 1														
Soil				√	✓	√		✓	✓	✓					
cartography				•	•	•		•	•	•					
0 1 7	Determination														
	of soluble							1			1				
	chlorides (Cl ⁻) 1							-							
	ciliorides (Ci) 1														
Importance			,									,			,
of soil			✓	✓	✓							✓	✓		✓
cartography															
	Determination														
	of soluble														
	carbonates (CO ₃														
	and -							✓			✓				
	bicarbonates														
	(HCO ₃ -) 1														
Round-up															
discussion															
on the			✓	✓	✓	✓	✓								
previous															
topics															
•	Determination														
	of soluble														
	carbonates (CO ₃														
								✓			✓				
	and .														
	bicarbonates														
	(HCO ₃ -) 1														
Part three: pl	ant-water														
relation															
Introductio															
n for plant															
water		1			✓	✓	✓								✓
relation															
Definition		1	1												
of Drought		2			✓	1	1								✓
and its		_			•										
reasons															
Drought		3													
and Origin															
of															
					✓	✓	✓								✓
Adaptation															
to Water-															
Stress												ļ			
Low and															
high soil-		4					✓					1			✓
water		4	1				*					*			*
potentials		1	1												
Osmo															
regulation															
		5	1		✓	✓						✓	✓	✓	✓
in higher		1	1												
plants						<u> </u>					<u> </u>	ļ			
Water		6	1	1	✓	✓						✓	✓	✓	✓

	T		1					 				
stress in												
higher												
plants												
Water												
transport												
and		7		1						✓	1	✓
relationship		,		•						•	•	•
to growth												
processes												
Metabolic												
responses												
of plants to		8		✓	✓	✓						✓
water												
deficits												
Cell-level												
metabolic		9		✓	✓	✓			✓	✓	✓	✓
responses												
Effects of		10,										
water		11										
deficits on												
metabolism												
1,2												
Adaptive												
significance												
of												
metabolic		12		✓		✓			✓	✓		✓
responses												
to water												
deficits.												
Round-up												
discussion												
on the		13							✓			✓
previous												
topics												
Assessme		14										
nt												
	l .											

5.2 Learning and Teaching Methods

	Course outcomes ILOs												
Learing Method	a	wledge and standing	Intellectua Skills				a Pra	ssiond ctic		General and Transferable Skills			
	A1	A2	B1	B2	В3	C1	C2	C3	C4	D1	D2	D3	D4
Lecture	٧	٧	٧	٧	٧								
Discussion (Brain Storming)													
Self-learing (Essay)													
Field Trips													
Practical						٧	٧	٧	٧			٧	

5. 3. Assessment Methods

	Course outcomes ILOs													
Assessment Methods	Knov a Unders	Intellectual Skills				a Prac	ssio nd ctica ills		General and Transferable Skills					
	A1	A2	B1	B2	В3	C1	C2	C3	C4	D1	D2	D3	D4	
Essay Question	٧	٧	٧	٧	٧									
MCQ														
Student Activity														
Practical						٧	٧	٧	٧		٧			

Course coordinator: Prof. Ahmed Sharaf El-Din

Head of Botany Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Ecology

A- Basic Information

Course Title		- Advanced studies on soil physics and soil lant Water relations
Course Code	1518	
Academic Year	2014/2014	
Coordinator	Prof. Kamal S	Shaltout
Other Staff		
Pre-Requisite	GC level Bio	logy or its equivalent
Semester	Two semest	er
Course Delivery	Lecture	14 x 1h lectures
	Practical	14 x 2h practical
Parent Department	Botany Dep	artment
Date of Approval	8. 2014	

B- Professional Information

Course aims:

Achieve a comprehensible form of the too much data that characterize the modern biological research, apply statistical tests for evaluating differences, variations and associations between populations and their significance in probability terms, teach the students the modern software programs for statistical analysis of a set of observations obtained from a population in the pubsequent literature and find out the best possible experimental design that provides the best sorting out of the controlled and uncontrolled variations.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the role of the biostatistics in the procedure of the biological scientific research.
- A2. Recognize the association between variables in normal and abnormal distributed populations (correlations and regressions).
- A3. Compare between each pair of treatments in multi-treatment experiments
- A4. Explain the tests of significance of the difference between two or more than two sampled populations.
- A5. Discuss the application, advantages and disadvantages of the different types of experimental designs.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Differentiate between the characteristics of the different types of distributions
- B2. Demonstrate the principles and approaches underlying current methods of biostatistics and its application using computer software programs
- B3. Apply the best suitable statistical tests for the different biological experiments
- B4. Perform suitable experimental designs.
- B5. Analyze the results statistically.

c- Professional skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Perform the best suitable statistical tests for the different biological experiments
- C2. Provide the statistical consultation for the students and researchers of biology.
- C3. Prepare the suitable experimental design and to analyze the results statistically

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Use databases and library search methods as well as internet sites
- D2. Independent learning ability required for continuing professional development
- D3. Work with others, use and manage ideas and information .
- D4. Demonstrate written and verbal communication skills on modern approaches

3. Contents

Week	Торіс
1	Introduction about Biostatistics as a tool of scientific research
2	Sampling of attributes
3	Frequency and probability distributions
4	Normal distribution
5	Binomial distribution
6	Frequency and probability distributions
7	Normal distribution and Binomial distribution
8	Poisson distribution
9	Tests of significance
10	Round-up discussion on the previous topics
11	Partial examination

12	Introductory note on analysis of variance
13	Data transformations, One-way analysis of variance
14	Some basic experimental designs (completely random, randomized complete block and Latin square designs)
15	Two-way analysis of variance
16	Split-plot experimental design Split-plot experimental design
17	Least significant difference (LSD)
28	Least significant range (LSR) tests
29	Simple linear regression
20	Simple linear regression
21	Rank correlation
22	Curve fitting
23	method of least squares
24	Multiple correlation, regression and analysis of time series
25	Multiple regression
26	Analysis of time series
27	Round up discussion on the previous topics
28	Round up discussion on the previous topics
4.	Teaching and learning methods

4. Teaching and learning methods

	8	
a.	Lectures	\boxtimes
b.	Practical training / laboratory	\geq
c.	Seminar / Workshop	
d.	Class Activity	_

e. Student assessment methods

Written final exam	to assess	KU, I
Practical	to assess	Р
Semester work	to assess	-

*KU: Knowledge and Understanding, I: Intellectual, P: Professional, T: Transferable

Assessment schedule

Assessment 1	Practical exam	Week	After week 28
Assessment 2	Final exam	Week	After week 28

Weighing of assessments

Final-term Examination 60 %

Practical Examination 40 %

Semester work - %

Total 100 %

f. List of references

Course notes

Essential books (text books)

Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA

Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA

Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Recommended books

Voelkl, K. E. & Gerber, S. B. 1999. *Using SPSS for Windows: Data Analysis and Graphics*. Springer, New York, USA.

Stephens, L. J. 1998. *Beginning Statistics*. Schaum's Outline Series, McGraw-Hill. New York, USA.

Web sites

www.google.com

http://www.accessexcellence.org/RC/genetics.htm

www.researchnavigator.com

g. Facilities required for teaching and learning

- Generic resources, such as the library.

- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator: Prof. Kamal Shaltout

Head of Department: Prof. Alaa Abou-Zeid

Date: / 8 / 2014

Course Contents – Course ILOs Matrix

Course code: 1518, course title: Biostatistics

Normal N	Course Contents	Weeks																	
Normal Section Secti				Knov	vledg	e and			lmi	ollost	ual		Pro	fessio	onal		Tranfo	vrahl	_
Introduction 1				und	erstar	nding			ini	enect	uai			skills			ırante	errabi	е
Sampling of attributes 2					А3	A4	A5				B4	B5							D4
Sampling of attributes	Introduction	1	✓	✓				√	✓	✓			√	√	✓	✓	√	√	√
Attributes Company C																			
Frequency and probability distributions		2	✓	✓									✓	✓	✓		✓	✓	✓
Probability distributions																			
distributions	Frequency and	3	✓	✓				✓	✓	✓									✓
Normal	probability																		
Binomial S S S S S S S S S	distributions																		
Binomial distribution	Normal	4	✓	✓				✓	✓	✓			✓	✓	✓	√	✓	✓	√
Single S	distribution																		
Frequency and probability	Binomial	5				✓	✓	✓							✓		✓	✓	✓
Probability distributions	distribution																		
Probability	Frequency and	6	✓	✓				✓	✓	✓			✓	✓	✓		✓	✓	✓
Normal distribution and Binomial Bino																			
distribution and Binomial distribution Poisson 8	distributions																		
Binomial distribution		7	✓	✓			✓	✓	✓				✓	✓	✓	✓			
Binomial distribution	distribution and																		
Poisson	Binomial																		
distribution Tests of significance Round-up discussion on the previous topics Partial examination Introductory note on analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Split-plot experimental design Least significant difference (LSD)	distribution																		
Tests of significance Round-up discussion on the previous topics Partial examination Introductory note on analysis of variance Some basic experimental design Split-plot experimental design Least significant difference (LSD)	Poisson	8	✓	✓			✓	✓	✓				✓	√	✓			√	√
Tests of significance Round-up discussion on the previous topics Partial examination Introductory note on analysis of variance Some basic experimental design Split-plot experimental design Least significant difference (LSD)	distribution																		
Significance Round-up discussion on the previous topics Partial examination Introductory note on analysis of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Two-way analysi		9						√	✓	✓			√					✓	√
Round-up discussion on the previous topics Partial examination Introductory note on analysis of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
discussion on the previous topics Partial examination Introductory note on analysis of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design I7		10	√	√		√	√	√					√						
the previous topics Partial examination Introductory note on analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
topics Partial examination Introductory note on analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
Partial examination 11																			
examination Introductory note on analysis of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)		11	√							√			√						
Introductory note on analysis of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
note on analysis of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design I7		12	√	√		√	√	√								√			√
of variance Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
Data transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
transformations, One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)		13								√			√	✓	✓	✓	√	✓	√
One-way analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)		13																	
analysis of variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
variance Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
Some basic experimental designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
experimental designs Two-way 15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓		14	√	✓	√	✓	✓			√	√	√	√	✓	√	✓	√	✓	√
designs Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)		- '																	
Two-way analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)	l																		
analysis of variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)		15	✓	√				✓	✓	✓									✓
variance Split-plot experimental design Split-plot experimental design Least significant difference (LSD)		-5																	
Split-plot experimental design Split-plot experimental design Least significant difference (LSD)																			
experimental design Split-plot experimental design Least significant difference (LSD)		16	✓					✓	<u> </u>				✓						
design Split-plot experimental design Least significant difference (LSD)		10																	
experimental design Least significant difference (LSD)																			
design Least significant difference (LSD)																			
Least significant difference (LSD)																			
difference (LSD)	Least significant	17	✓		✓	✓	✓	✓	/	√	1		✓	✓	/	✓	✓	✓	✓
		-																	
	Least significant	18	√	/	1	1	1	✓	1	1	1		√	✓	✓	√			

range (LSR) tests																	
Simple linear regression	19			√	√	√	√	√	√		√	✓	√	√	√	√	√
Simple linear regression	20	√	√										√	√			√
Rank correlation	21	✓	✓				✓	✓	✓		✓	✓	✓	✓			✓
Curve fitting	22	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓
method of least squares	23	√	√				√	√	√								√
Multiple correlation	24	√	√				√	√	√		√	✓	√	√	√	√	√
Multiple regression	25	√		√	√	√	√	√		√							
Analysis of time series	26	√	√				✓	✓	✓		✓	✓	✓	✓			√
Discussion around up	27	√	√				√	√	√		✓	√	√	√			✓
Assessment	28	✓	✓	✓	✓	✓	✓		✓		✓	✓	✓				

Course coordinator: Pro. Kamal Shaltout

Head of Botany Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Ecology

Department offering the programme	Botany Department
Department offering the course	Mathematics
Academic year / Level	2014-2015, first term
Date of specification approval	08/2014

A- Basic Information

Title: Computer	Code: 1517
Tutorial:	
Total:	
Coordinator	Prof. Mohamed El-Awady
Other Staff	Prof. Mahmoud Kamel, Prof. Ahmed
	El-Shishtawy, Prof. Qadry Zakaria
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	Lecture: 28 x 1h lectures
	Practical: 28 x 1h practical

B- Professional Information

3. course aims:

Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies. Underpin academic work throughout postgraduate studies. Provide opportunities to develop skills required for team working, oral presentations of scientific material, and career choices.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A4. Recognize the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A5. Arrange powerful presentation using sophisticated software packages.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B8.Integrate different application programs to develop effective information analysis and presentation.
- B9. Solve scientific problems using computer programming.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Use a number of computer packages to present information.
- C2. Perform necessary graphical, statistical and frequency analyses of different types of data.
- C3. Use of different internet resources.
- C4. Use of different photo enhancing and manipulation techniques.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

D6. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

4. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data

modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

exponential-logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV,

and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video,

etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lecture 8-9 Use of internet capabilities and searching engines

Assignment 4: Using the Internet

Life search on the internet for some real information

Lecture 10-11 Creating Data Base and related Queries and Reports

Assignment 5: Using Application programs

Creating a real Data Base and apply different queries and reports

to extract useful information

Lecture 12-13 Computer programming language

	Assignm	ent 6: Progra	amming usi	ing Visu	ıal Basic 6	
	Solving	real problem	s using a co	mpute	r language	
Lecture 14-15	Photo m	anipulation a	and enhand	ement	using the pho	otoshop
	Assignm	ent 7: Using	the Photos	shop pr	ogram	
	Practicir	ng on manipu	lation and	enhand	ing of images	i
Lectures 16	Introduc	tion to Data	frequency	analysi	s using Fourie	er analysis
	and Fou	rier transfori	mation sea	rching f	or periodiciti	es
5. Teachir	ng and learni	ing methods				
	a.				\boxtimes	
	b		ining / labor	ratory		
	C.	Seminar / V	Vorkshop			
	d.	. Class Activ	ity		-	
	t assessment	methods				
Written final ex	am	to assess	KU, I			
Practical		to assess	Р			
Semster work		to assess	-			
Assessment sch	edule			_		
Assessment 1	Practical exa	am		Week		
Assessment 2	Final exam			Week		
				_		
Weighing of ass	essments					
I	Final-term Ex	amination			60 %	
1	Practical Exan	nination			40 %	
9	Semester wo	rk			- %	
-	Total				100 %	
f. List of	references			!		
Course notes						
- Notes giv	ven to stude	ents at each	section de	scribe 1	the tasks to b	oe completed,
therefor	e no particu	lar book(s) r	ecommend	led.		
g. Facilitie	es required f	or teaching a	nd learning			
- Projector	s; Video an	d Overhead				
- LCD scree	ens and writ	ing Boards				
- Commerc	cial compute	er scientific s	oftware pa	ackages	i.	
Course coordinate	ator:					_
Prof. Mohame	d El-Awady					
Head of Depart	ment:					
Prof. Ala	a Abou-Zeic	l				

/ 8 / 2014

Date:

Course Contents - Course ILOs Matrix

Course code: 1517, course title: Computer

Course	W					coa			,, ,						0.00						
Contents				ledg rsta				Inte	ellec	tual			Pr	actio	cal			Trar	nferr	able	
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	В 4	В 5	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5
Methods for graphical represent ations	1	✓	√				V	V				✓	✓	\	\		V				
Assignme nt 1 : Using Applicati on programs	2	✓	✓				✓	✓				√	✓	✓	✓		•				
Statistical Data analysis	3	✓	✓				✓	✓				✓	✓	√	✓		√				
Assignme nt 2 : Using Applicati on programs	4	✓	√				√	√				✓	✓	✓	✓		✓				
Creating powerful presentation	5	✓	√				√	✓				√	√	✓	✓		√				
Assignme nt 3: Using PowerPoi nt program	6	✓	√				√	√				✓	✓	✓	✓		✓				
Use of internet capabiliti es and searching engines	7	✓	✓				✓	✓				✓	✓	✓	✓		✓				
Assignme nt 4: Using the Internet	8	✓	✓				√	√				√	√	√	✓		√				
Creating Data Base and related Queries	9	√	√				√	√				√	√	✓	√		√				

					1	1			1	1		1		1			
and																	
Reports	_	√	✓			→	√			√	√	✓	√		√		
Assignme	1	•	•			'	'			V	V	~	•		'		
nt 5:	0																
Using																	
Applicati																	
on																	
programs																	
6	4	√	/		_	√	√			√	√	√	√		√		
Computer	1	•	√			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	'			'	'	•	•		'		
program	1																
ming																	
language		/	/	\vdash	-					/	1	/	1		/		
Assignme	1	✓	✓			✓	✓			✓	✓	✓	✓		✓		
nt 6	2																
Photo	1	✓	✓			✓	✓			✓	✓	✓	✓		✓		
manipula	3																
tion and																	
enhance																	
ment																	
using the																	
photosho																	
р																	
Assignme	1	✓	✓			✓	✓			✓	✓	✓	✓		✓		
nt 7:	4																
Using the																	
Photosho																	
р																	
program																	
Introducti	1	✓	✓			✓	✓			✓	✓	✓	✓		✓		
on to	5																
Data																	
frequency																	
analysis																	
Assessme																	
nt																	

Learning and Teaching Methods

								С	our	se c	utc	ome	es IL	.Os									
Learing Method			an	edg d and		lı		lled kill	tua s	al		rofo nd F S		ctic			Tra	nera nsfe Skil	rab	-			
	A1	A2	A2 A3 A4 A5				В2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5			
Lecture	٧	٧	٧	٧	٧		٧	٧		٧													
Discussion (Brain Storming)																							
Self-learing (Essay)																							
Field Trips																							
Practical											٧	٧	٧	٧	٧								

Assessment Methods

								С	our	se c	utc	ome	es II	LOs								
Assessment Methods		Knowledge and Understanding			and					Intellectual Skills			Professional and Practical Skills					General and Transferable Skills				
	A1	A2	А3	A4	A5	B1	B2	В3	В4	B5	C1	C2	C3	C4	C 5	D1	D2	D3	D4	D5		
Essay Question	٧	٧	٧	٧	٧		>															
MCQ																						
Student Activity																						
Practical											٧		٧		٧							
Assessment Methods																						

Course coordinator: Prof. Mohamed El-Awady

Head of Botany Department: Prof. Alaa Abou-Zeid

M.Sc. Program Of Physiology

A. Program Specification

Program Title	Master of Physiology
Award	Master of Physiology
Parent Department	Botany Department
Teaching Institution	Faculty of Science - TU
Awarding Institution	Tanta University
Coordinator	Wedad Kasem
External Evaluator(s)	This system has not applied yet
QAA Benchmarking	National Academic Reference Standards (NARS)
Standards	
Other Reference Points	Bioscience, Egyptian Code of Assessment
Date of Delivery	Every year in September
Review Date	Internal Periodic Review, Summer 2014
Date of Approval	8, 2014

Academic Year : 2014-2015

Aims

To understand main aspects of water relations and manometric methods, learn modern physiological techniques, provide intense hands-on training in molecular biology techniques, explore theory and practice of plant metabolism and enzymology, improve theoretical and practical fundaments of advanced biochemistry techniques and the physiology of microorganisms.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should have acquired knowledge and understanding of the underlying concepts and principles of:

- A21. Advanced equipments and chromatographic separation.
- A22. Advanced biochemistry and organic acids metabolism.
- A23. Physiology of microorganisms and update readings and studies.
- A24. Ion absorption and permeability, and water relations and stomata.
- A25. Manometric methods in metabolism and nitrogen assimilation.

B. Intellectual skills:

At the end of this module students should have acquired the ability to:

- B1. Think logically and organize tasks into a structured form.
- B2. Assimilate knowledge and ideas based on wide reading and through the internet.
- B3. Understand the evolving state of knowledge in a rapidly developing field.
- B4. Construct and test hypothesis.
- B5. Plan, conduct and write a report on an independent research project.

C. Professional and practical skills

There is no Practical Skills

D. General and transferable skills:

- D40. Work in a team and be able to cooperate with others.
- D41. Demonstrate written and verbal communication skills using IT in work and in life.
- D42. Have knowledge of accounting and management.
- D43. Ability to manage time and resources.
- D44. Present ideas and arguments in a structured manner.

E. Teaching and learning

Knowledge will be developed through

1. Lectures.

F. Assessment

A wide variety of assessment methods are used

1. Written exam.

3. Academic standards

Academic Reference Standards: The Academic Reference Standards (ARS) for MSc. program degree in Botany as well as the attributes and capabilities of the graduates were based on the General Academic Reference Standards (ARS) for graduate studies published by the National Authority for Quality Assurance and Accreditation of Education (2009) for M.Sc. Degree. Specific reference standard for the M.Sc. in botany were approved by the Council of the Faculty of Science, Tanta University in 2014.

3.A External references for standards (Benchmarks):

In order to fulfill international standards, our students should acquire:

I. Knowledge and Understanding:

Approaches to study and forms of subject knowledge likely to be common to all bioscience degree programs will include the following:

- knowledge and understanding the processes and mechanisms of Plant Functions and Life:
- From molecular to cellular.
- From Organism to community.
- Engagement with the essential facts, major concepts, principles and theories associated with the chosen discipline.

- Understanding of information and data, and their setting within a theoretical framework.
- familiarity with the:
- Terminology.
- Nomenclature.
- · Classification systems as appropriate.
- Methods of acquiring, interpreting and analysing biological. information with a critical understanding of the appropriate contexts for their use through the:
- Study of texts.
- Original papers.
- Reports and data sets.
- Developing knowledge about the diversity of life and its evolution.
- Knowledge of a range of practical techniques and methodologies, including
 :
- · Data analysis.
- Engagement with current developments in the biosciences and their applications, and the philosophical and ethical issues involved.
- The applicability of the biosciences to the careers to which graduates will be progressing.

II. Skills

A. Generic skills

- an appreciation of the complexity and diversity of life processes through the study of organisms, their molecular, cellular and physiological processes, their genetics and evolution, and the interrelationships between them and their environment.
- the ability to read and use appropriate literature with a full and critical understanding.
- the capacity to give a clear and accurate account of a subject.
- critical and analytical skills: a recognition that statements. should be tested and that evidence is subject to assessment and critical evaluation.
- the ability to employ a variety of methods of study in investigating, recording and analyzing material.
- the ability to think independent, set tasks and solve problems.

B. Key skills

The specific key skills that should be developed in bioscience degree courses are subdivided into:-

1. Intellectual skills

- Recognizing and applying subject-specific theories, concepts or principles. For example:
 - The relationship between life and Plant Physiology.
 - The nature of essential nutrients in microbes, cells, plants and animals;
- Analyzing and summarizing information critically, including published research or reports;
- Obtaining and integrating several lines of subject-specific evidence to formulate and test hypotheses;
- Applying subject knowledge and understanding to address familiar and unfamiliar problems
 - organisms under investigation.
 - other stakeholders.

2. Interpersonal and teamwork skills

- Identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles;
- Recognizing and respecting the views and opinions of other team members;
- Negotiating skills;
- Evaluating performance as an individual and a team member; evaluating the performance of others;
- Developing an appreciation of the interdisciplinary nature of science and of the validity of different points of view.

3. Self-management and professional development skills

- Developing the skills necessary for self-managed and lifelong learning (e.g. working independent, time management and organization skills);
- Identifying and working towards targets for personal, academic and career development;
- Developing an adaptable, flexible, and effective approach to study and work.

3.B-Comparison of provision to external references:

International Academic Standards (NARS)

4. Curriculum Structure and contents:

Level 1	Obligatory Four Courses	Program ILOs Covered					
Code	Course Title	Ter	m 1	Ter	m 2	Cred.	
			Pract	Thr	Prac		
	Advanced Equipments and Chromatographic Separation.	1	-	1	-	2	
	Advanced Biochemistry and Organic Acids Metabolism.	1	-	1	-	2	
	Physiology of Microorganisms and Free Readings.	1	-	1	-	2	
	Ion Absorption and Permeability, and Water Relations and Stomata.	1	-	1	-	2	
	Manometric Methods in Metabolism and Nitrogen Assimilation.	1	-	1	-	2	
	German Language						
	Computer						

Brief Description of Courses for the M.Sc. in Physiology A-Courses

1-Uses of Instrumental Equipment & Chromatography

First part: Instrumental Equipment

- Concepts of instrumental analyis (analytical approach, defining, statistics and data handeling)
- Sample preparation and performing the measurement.
- IR Spectroscopy (Absorption And Instrumentation)
- Sampling techniques and analytical application)
- Visible and ultraviolet molecular spectroscopy (introduction, Instrumentation0
- UV absorption, Spectra and the structure of organic molecule)
- UV analytical application, accuracy and precision in UV/ VIS
- Nephlometry and turbidimetry, molecular emission
- UV instrumentation and analytical application
- Flame emission and atomic absorption spectroscopy (emission and asorption, atomization and ionization)

- Flames, burners and nebulizers, nonflame automization
- Radiation sources and optical system, Flame spectra and interferences
- Quantitative analysis and Typical applications.
- Atomic absorption spectrometry(Absorption of radiant energy, Instrumentation)

Second part: Chromatography

- Introduction (Definition and application)
- Theoretical concepts.
- Polarity and different solvent system of TLC.
- Adsorption thin-layer different adsorbant, developers and visualizing agents.
- Partition thin layer.
- TLC on microscopic slides and larger layer.
- Preparation methods of TLC.
- Quantitative TLC.
- Preparation of TLC.
- Column adsorption chromatography.
- Column partition.
- Choice of a system GLC and bases for separation.
- Identification of components in a mixture.
- Quantitative analysis of a mixture.

•

2- Advanced biochemistry AND Metabolism

First Part: Advanced biochemistry

- Chlorophyll pigments: types, distribution, biosynthesis and function
- Carotenoid pigments: types, distribution, biosynthesis and function
- Phycobiliproteins: types, distribution, biosynthesis and function
- Structure and properties of ATP
- Types of phosphorylation in green cells
- Substrate level phosphorylation
- Oxidative phosphorylation
- Photosynthetic phosphorylation
- Mechanism of phosphorylation
- Biological function of energy rich compounds.
- The chemical coupling hypothesis
- The conformational coupling hypothesis
- The chemiosmosis coupling hypothesis
- Selected papers on the topics of the course

Second Part: Metabolism

- Introduction on carbon metabolism in plants
- Organic acids in C3 plants
- Organic acids in C3 plants

- Crassulacean acid metabolism
- Organic acids in C4 plants
- Organic acids and cellular respiration
- Malate aspartate shuttle
- Other pathways of carbohydrate metabolism
- Mitochonderial and peroxisomal oxidation of fatty acids
- Mitochonderial and peroxisomal oxidation of fatty acids
- Role of organic acids in the signal transduction pathways
- Role of organic acids in stress detoxification strategy
- Discussion of some selected papers on the course topics
- Discussion of some selected papers on the course topics

•

3- Physiology of Fungi and different studies

First part: Free Reading

- Discussions on the topics of the course
- Distribution of assignments of basic molecular genetics
- Control of gene expression
- The genetics of flowering plant
- Tissue specific gene expression
- Gene cloning protocols
- Gene transfer methods
- Applications of recombinant DNA
- Methods of gene transfer
- Breeding for drought resistance
- Mutations and genome shuffling
- Introduction to molecular markers
- Types of molecular markers
- Applications of molecular markers
- Presentation of assignments

Part 2: Physiology of Fungi

- Introduction about the fungi stress protein
- Heat shock protein (hsp)
- Heat shock protein as Chaperons (hsp 70, hsp80 and hsp 60)
- Heat shock protein: proteases (hsp 100 and ubiquitin)
- Heat shock protein with unknown fuctions (including α -Crystallin-related proteins and other heat shock proteins)
- Heat shock protein: Glycolysis and respiration
- Heat shock protein: Oxidative damage
- Open Discussion
- Heat shock transcription factors
- Cellular effects of Heat shock protein
- Respiration and energy generation and splicing of mRNA precursors

- Heat shock protein and development (differentiation)
- Heat shock protein and trehalose accumulation
- Open discussion about the previous topics
- Assessments

4- Water relation and mineral nutrition

- Physiology (1) Botany
- Structure of water molecule
- Physical and chemical characterizes water
- Potentials controlling water movement through the plants
- Diffusion and forces controlling it
- Osmosis and osmoregulation capacities and demand
- Osmosis equations and plant state
- Permeability
- Identification of plant nutrients
- Nutrient absorption factors and interaction
- Nutrients translocation controlling factors
- Factors affecting nutrients balances
- Nutrients deficiency and plant activity
- Ion stress and plant growth
- Overall revision

5. Programme admission requirements

Arrangements for admission are based on the national guidelines with no Faculty control on the number of newly enrolled students.

Candidates must satisfy the general admission requirements of the University, Faculty in Biology and also hold one of the following:

- · General Certificate of Secondary Education (GCSE) in Biology
- · GCSE in Biology at grade C or higher.
- International Baccalaureate (GCSE, American Diploma)?

6. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression through the programmes in which they are enrolled.

- To progress from year one to year two or year two to year three or year three to year four, student need to pass in all course units with a maximum of fail in two.
- Student who fails their final examination at the first attempt will be eligible only for a "Pass" degree following any re-set examinations.
- ☐ Progression from level one to level two:

In order to progress from Level One to Level Two, a student shall normally achieve a threshold performance at part Level One. To gain a threshold

	Knowledge and	Intellectual skills	Professional skills	General skills
	Understanding			

performance at Level One, a student shall normally be required to pass in all course units with a maximum of fail in two.

□Progression from 'Level Two' to 'Level Three:'

To gain a threshold performance in 'Level Two', a student shall normally be required to achieve an aggregate score determined annually by the faculty council, and to pass in all course units. In order to pass from 'Level Two' to Part three, a student shall normally be required to achieve a threshold performance at 'Level Two' and to pass in all course units with a maximum of fail in two.

□To pass the Summer Training, students must achieve a non-scored threshold training level base on submission of a formal written non-scored report from the training institution and the supervisor. Students who fail the summer training will (not) be required to transfer to the four year programme.

□To obtain the degree at the end of the 'Level Four', student must pass in all course units and achieve at least an overall of 60%.

7. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholde Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	Not applied yet	

Name	Signature	Date
Programme Coordinator:	Dr.Wedad Kasem	8/2014

		A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	C1	C2	C3	C4	D1	D2	D3	D4	D5
Advanced Equipments and Chromatographic Separation.	1521	٧	٧	٧	٧		٧	٧	٧		٧					٧	٧	٧	٧	٧
Advanced Biochemistry and Organic Acids Metabolism.	1522	٧	٧	٧	٧		٧	٧	٧	٧	٧							٧		٧
Physiology of Microorganisms and Free Readings.	1523	٧			٧	٧	٧			٧						٧	٧		٧	٧
Ion Absorption and Permeability, and Water Relations and Stomata.	1524	٧	٧	٧	٧	٧		٧	٧	٧	٧					٧	٧	٧	٧	٧
Manometric Methods in Metabolism and Nitrogen Assimilation.	1525	٧	٧		٧	٧	٧	٧										٧		
Computer	1527		٧	٧	٧	٧			٧	٧										

M. Sc. Course specifications of Plant Physiology

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014-2015, Two terms
Date of specification approval	8/ 2014

A- Basic Information

Title: Uses of Instrumental Equipments &	Code: 1521
Chromatography	
	Lecture: 2
Tutorial:	Practical:
Total:	
Coordinator	Dr. El-Sayed Abd El-Latef Foda
Other Staff	Dr. Samha Mohamed Abdel Monem
	Dwoidar
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (first term)
	14 x 1h lectures (second term)

B- Professional Information

Course aims:

Teach students the principles and concepts of essential topics of instrumental analysis. Provide students with the knowledge and skills of chromatographic methods including methods of sampling, sample handling and sample preparation from plant materials for analysis.

2-Intended learning outcomes of course (ILOs)

a- Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

A.1- Describe the different types and function of instrumental equipment and

chromatography.

A.2- Illustrate chromatographic different applied methods for separation of the samples.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1- Compare between the different use of instrumental equipments and chromatographic techniques.
- B2- Numerate different adsorbents, developers, visualizing agents and different chromatographic techniques.
 - B3- Apply the modern quantitative analysis and typical applications

c- Professional and practical skills : There's no practical skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Acquire, analyze, synthesize, summarize and present information and ideas from a wide range of sources•
- D2. Communicate effectively by written, spoken and graphical means using appropriate techniques
- D3. Work effectively with a range of types of information technology
- D4. Work alone or with others to achieve an objective

3. Contents

	Instrumental Equipment							
Week	Торіс							
1	Concepts of instrumental analysis (analytical approach, defining, statistics and data handling)							
2	Sample preparation and performing the measurement.							
3	IR Spectroscopy (Absorption And Instrumentation)							
4	Sampling techniques and analytical application)							
5	Visible and ultraviolet molecular spectroscopy (introduction, Instrumentation0							
6	UV absorption, Spectra and the structure of organic molecule)							
7	UV analytical application, accuracy and precision in UV/ VIS							

8	Nephlometry and turbidimetry, molecular emission
9	UV instrumentation and analytical application
10	Flame emission and atomic absorption spectroscopy (emission and asorption, atomization and ionization)
11	Flames, burners and nebulizers, nonflame automization
12	Radiation sources and optical system, Flame spectra and interferences
13	Quantitative analysis and Typical applications.
14	Atomic absorption spectrometry(Absorption of radiant energy, Instrumentation
	Chromatography
Week	Торіс
1	Introduction (Definition and application)
2	Theoretical concepts.
3	Polarity and different solvent system of TLC.
4	Adsorption thin-layer different adsorbant, developers and visualizing agents.
5	Partition thin layer.
6	TLC on microscopic slides and larger layer.
7	Preparation methods of TLC.
8	Quantitative TLC.
9	Preparation of TLC.
10	Column adsorption chromatography.
11	Column partition.
12	Choice of a system GLC and bases for separation.
13	Identification of components in a mixture.
14	Quantitative analysis of a mixture.
15	Introduction (Definition and application)

7. Teaching and learning methods

. Lectures

	b.Semin	cal training / nar / Worksho Activity	=			
8. Stud	ent assessment	-				
Written final	exam	to assess	KU, I			
Practical		to assess	-			
Assessment s	schedule					
ssessment 1	Practical exa	ım		Week	-	
ssessment 2	Final exam			Week	16	
Weighing of	assessments			I		
	Final-term Exa	amination			100	%
	Practical Exan	nination			-	%
	Total				100	%
Course notes	es: Lecturer r	note				
Recommende	ed books					
Web sites						
http://en.wik	ipedia.org/wiki,	History_of_r	olant_systema	atics		
http://www. _l	olantsystematics	s.org/				
10. Facil	ities required f	or teaching	and learning			
·	pies of past exar		l example ass	essments	5.	
	urces, such as th	•				
Computer Aid	ded, such as E-m	iail, online co	onference, da	ta show.		
Course web p	age, Digital can	nera for imag	es collections	as a too	I for activ	ve learning.
Course coord	linator: Dr. El-S	ayed Abd E	I-Latef Foda			

Course Contents – Course ILOs Matrix

Course code: 1521, course title: Uses of Instrumental Equipments & Chromatography

Course Contents	Week s	Course outcomes ILOs											
		Knowledge and nderstandin g		Intellectual			Practical			Tranferrable			
Instrumental Equipment		A1	A2	B 1	B 2	B 3	C 1	C 2	C 3	D 1	D 2	D 3	D 4
Concepts of instrumental analysis (analytical approach, defining, statistics and data handling)	1	√	√										
Sample preparation and performing the measurement.	2	✓	√	✓	✓	✓				✓	✓	✓	✓
IR Spectroscopy (Absorption And Instrumentation)	3			√	√	√				√	√		✓
Sampling techniques and analytical application)	4			√	✓	√				√	√		✓
Visible and ultraviolet molecular spectroscopy (introduction, Instrumentation	5			√									✓

UV absorption, Spectra and the structure of organic molecule)	5	√	✓	✓						√	
UV analytical application, accuracy and precision in UV/	6				✓					✓	
Nephlometry and turbidimetry, molecular emission	7				√			√	✓	✓	
UV instrumentation and analytical application	7				√						
Flame emission and atomic absorption spectroscopy (emission and asorption, atomization and ionization)	8	√	✓		√					✓	√
Flames, burners and nebulizers, nonflame automization	8		✓							√	✓
Radiation sources and optical system, Flame spectra and interferences	9	√	✓			✓			√	✓	√
Quantitative analysis and Typical	10	✓								√	✓

applications.												
Atomic absorption spectrometry(Absorption of radiant energy, Instrumentation	11	~	✓			✓	✓					
Concepts of instrumental analysis (analytical approach, defining, statistics and data handling)	12					√	√					
Sample preparation and performing the measurement.	13			✓	✓	✓	✓		✓	✓	✓	✓
IR Spectroscopy (Absorption And Instrumentation)	14			✓	✓	√				√	✓	✓
Chromatography		✓	√	✓	√	√				√	✓	✓
Introduction (Definition and application)	1	✓	✓	√	✓	√				√	√	√
Theoretical concepts.	2	✓	✓	✓	✓	✓				✓	✓	✓
Polarity and different solvent system of TLC.	3		✓	✓								✓
Adsorption thin- layer different adsorbant, developers and visualizing agents.	4		✓									✓

Partition thin layer.	5		✓	✓	✓	✓						√
TLC on microscopic slides and larger layer.	6		✓	✓	✓						√	√
Preparation methods of TLC.	7		✓	✓	✓							✓
Quantitative TLC.	8											√
Preparation of TLC.	9	✓							√		✓	✓
Column adsorption chromatography.	10	√							√		✓	√
Column partition.	11	✓	✓	✓	✓	✓			✓		✓	✓
Choice of a system GLC and bases for separation.	12	✓	✓	✓	✓				✓	√	✓	√
Identification of components in a mixture.	12				✓	√						
Quantitative analysis of a mixture.	14	✓							√			✓
Introduction (Definition and application)	15	✓		✓						√	√	√
thesis		✓	✓	✓	√	✓	✓	√	√			

5.2- Learning and Teaching Methods

								Cou	ırse	out	tcor	nes	ILC	s						
Learing Method	Knowledge and Understanding				Intellectual Skills				Professional and Practical Skills				General and Transferable Skills							
	A1	A1 A2 A3 A4 A5 B1			B1	В2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5	
Lecture	٧	٧	٧	٧	٧		٧		٧											
Discussion (Brain Storming)																				
Self-learing (Essay)																				
Field Trips																				
Practical																				

5.3- Assessment Methods

								Coı	urse	ou	tcoı	nes	ILO	s						
Assessment Methods	Knowledge and Understanding				Intellectual Skills			Professional and Practical Skills				General and Transferable Skills								
	A1	A2	А3	A4	A5	B1	B1 B2 B3 B4 B5 (C1	C2	C3	C4	C5	D1	D2	D3	D4	D5	
Essay Question	٧	٧	٧			٧			٧	٧										
MCQ																				
Student Activity																				
Practical											✓	√	✓	✓	√	√	√	✓	√	

Course coordinator: Dr.El-Sayed Abd El-Latef Foda

Head of Department: Prof. Dr. Alaa Abou-Zeid

M. Sc. Course specifications of Plant Physiology

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014-2015, Two terms
Date of specification approval	2014

A- Basic Information

Title: Advanced biochemistry and organic acids metabolism	Code: 1522
	Lecture: 2
Tutorial:	Practical:
Total:	
Coordinator	Prof. Dr. Awatif Ali Mohsen
Other Staff	Prof.Dr. M. El-Anwar H. Osman
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (first term)
	14 x 1h lectures (second term)

B- Professional Information

course aims:

Understanding the biosynthetic pathways of photosynthetic pigments and their role in photosynthesis. Teaching the students the concept and mechanism of phosphorylation in plant cells. Understanding the concept of carbon metabolism in the different compartments of the plant cells. Teaching the students the role of organic acids in the detoxification strategy against biotic and abiotic stresses.

2- Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-										
	A1. Identify	the	different	types,	distribution	and	function	of	all	

photosynthetic pigments in plants

- A2. Explain the concept of phosphorylation and energy production
- A3. Define the different mechanisms of phosphorylation leading to energy rich compounds.
- A4. Demonstrate the different pathways of organic acid metabolism in the plant cell

b- Intellectual skills

By the end o	f the M. Sc. course the graduate must be able to :-
B1.	Illustrate the interrelationship of the metabolic pathways via organic acids conversion in plant cells.
B2.	Analyze phosphorylation mechanisms pathways in plants.
В3.	Demonstrate the mechanisms of energy production in photosynthetic organisms.
В4.	Apply the modern technologies like stress protein, DNA sequence and gene transfer in gene manipulation as a strategy of stress detoxification and tolerance in plants

c- Professional and practical skills

There is no practical skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Prepare a research proposal on a topic of the course.
- D2.Use the internet to prepare an essay on the topics of metabolic pathways in the plant cell.
- D3.Use databases, library search and internet sites.

3. Contents

	Advanced Biochemistry									
Week	Topic									
1	Chlorophyll pigments: types, distribution, biosynthesis and function									
2	Carotenoid pigments: types, distribution, biosynthesis and function									
3	Phycobiliproteins: types, distribution, biosynthesis and function									

4	Structure and properties of ATP
5	Types of phosphorylation in green cells
6	Substrate level phosphorylation
7	Oxidative phosphorylation
8	Photosynthetic phosphorylation
9	Mechanism of phosphorylation
10	Biological function of energy rich compounds.
11	The chemical coupling hypothesis
12	The conformational coupling hypothesis
13	The chemiosmosis coupling hypothesis
14	Selected papers on the topics of the course
	organic acids metabolism
Week	Topic
1	Introduction on carbon metabolism in plants
2	Organic acids in C3 plants
3	Organic acids in C3 plants
4	Crassulacean acid metabolism
5	Organic acids in C4 plants
6	Organic acids and cellular respiration
7	Malate aspartate shuttle
8	Other pathways of carbohydrate metabolism
9	Mitochonderial and peroxisomal oxidation of fatty acids
10	Mitochonderial and peroxisomal oxidation of fatty acids
11	Role of organic acids in the signal transduction pathways
12	Role of organic acids in stress detoxification strategy
13	Discussion of some selected papers on the course topics
14	Discussion of some selected papers on the course topics

4. Teaching and learning methods

Lectures

Lectures	
Discussion	
Self learning	
Practical training / laboratory Seminar / Workshop Class Activity	

5. Student	assessment metho	ds				
Written final ex	xam to a	ssess	KU, I			
Practical	to a	ssess	-			
Assessment sc	hedule					
essment 1	Practical exam			Week	-	
essment 2	Final exam			Week	16	
Weighing of as	ssessments					
	Final-term Examina	ation			100	%
	Practical Examinat	ion				- %
	Total				100	%
6. List of	references			_		<u> </u>
Course notes	i cici ciices					
Essential books	s (text books)					
Recommended	l books					
Web sites						
• • •	oxfordjournals.o colby.edu/info.te	•	.1/Families	s.html		
http://www.	cedarville.edu/ac	ademic	s/sciencen	nath/silv	ius/352	20/352sites.htm
-	es of publishers o					
	emic press, Oxfor			•	-	.g. Springer
	ties required for te		ına iearninş	5		
- Generic resol	urces, such as the li	orary.				
- Electronic c	opies of past exa	ım pape	rs and exa	mple as	sessme	nts.
- Computer A	ided, such as E-r	nail, on	line confei	ence, da	ata sho	w.
- Course web	page, Digital can	nera for	images co	llections	as a to	ol for active
learning	<u> </u>					
Course coording	nator:					
Prof. Dr. Awa	tif Ali Mohsen					
Head of Depar	tment:					
Prof. Dr. Alaa A	hou-7eid	-			-	

Date: / 8 / 2014

Course Contents - Course ILOs Matrix

Course code: 1522, course title: Advanced biochemistry

						Co	urse	outco	omes	ILOs	;				
Course Contents	Week s		owle derst			I	Practica I			Tranferrabl e					
Advanced Biochemistry		A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4				D 1	D 2	D 3
Chlorophyll pigments: types, distribution, biosynthesis and function	1	√												√	*
Carotenoid pigments: types, distribution, biosynthesis and function	2	√												✓	
Phycobiliprotein s: types, distribution, biosynthesis and function	3	✓												√	
Structure and properties of ATP	4					√	√	√						√	
Types of phosphorylation in green cells	5	√	√										✓	√	√
Substrate level phosphorylation	5	√	√	√	√	√	√	√	√						√

Oxidative phosphorylation	6	✓	√	✓	✓	✓	√	✓	√		√	√	√
Photosynthetic phosphorylation	7	√	√	√	√				√		√	√	√
Mechanism of phosphorylation	7	√	✓	√							√	✓	√
Biological function of energy rich compounds.	8	√			√	√							
The chemical coupling hypothesis	8	√	√				√	√	√			√	√
The conformational coupling hypothesis	9	V	√	√	√	√	√	√				√	√
The chemiosmosis coupling hypothesis	10					√	√		√			√	
Selected papers on the topics of the course	11	√	√	√					√			√	
Chlorophyll pigments: types, distribution, biosynthesis and function	12	1	√	√	√	√	√		√			√	
Carotenoid pigments: types, distribution, biosynthesis and function	13	√	√									√	
Phycobiliprotein s: types, distribution, biosynthesis and	14	√	√	√	√	√	√		√			√	√

function												
organic acids metabolism												
Introduction on carbon metabolism in plants	1	√	√	√	√	√	√			√	√	√
Organic acids in C3 plants	2	✓				√	√			√		✓
Organic acids in C3 plants	3	√	√	√	√	√	√			✓		√
Crassulacean acid metabolism	4	√	√							✓		√
Organic acids in C4 plants	5	√	√	√	√	√	✓			✓	√	√
Organic acids and cellular respiration	6	√								√	√	√
Malate aspartate shuttle	7	√									√	√
Other pathways of carbohydrate metabolism	8											
Mitochonderial and peroxisomal oxidation of fatty acids	9	√										
Mitochonderial and peroxisomal oxidation of fatty acids	10	√									√	√
Role of organic acids in the signal transduction	11	√										√

pathways													
Role of organic acids in stress detoxification strategy	12	√	√	√	√								✓
Discussion of some selected papers on the course topics	12	√									√	\	✓
Discussion of some selected papers on the course topics	14	√	√	√			√	✓					✓
Assessment	16												

5.2- Learning and Teaching Methods

								Cou	ırse	out	tcor	nes	ILO	s								
Learing Method	Knowledge and Understanding						Intellectual Skills						Professional and Practical Skills					General and Transferable Skills				
	A1	A2	А3	A4	A5	В1	B2	В3	B4	B5	C1	C2	С3	C4	C 5	D1	D2	D3	D4	D5		
Lecture	٧	٧	٧	٧	٧		٧		٧							٧	٧		٧			
Discussion (Brain Storming)	٧	٧	٧		٧		٧		٧	٧						٧			٧	٧		
Self-learing (Essay)	٧	٧		٧		٧		٧								٧	٧					
Field Trips																						
Practical																						

5.3- Assessment Methods

								Co	ours	e ou	itcoi	mes	ILO	S							
Assessment Methods		Kno	and	l		Intellectual Skills						Professional and Practical Skills					General and Transferable Skills				
	A1	A2	А3	Α4	A5	В1	1 B2 B3 B4 B5 C1						С3	C4	C 5	D1	D2	D3	D4	D5	
Essay Question MCQ	٧	٧	٧			٧			٧	٧											
Student Activity																					
Practical																					

Course coordinator: Prof.Dr. Awatif Ali Mohsen

Head of Department: Prof. Dr. Alaa Abou-Zeid

M. Sc. Course specifications of Plant Physiology

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014-2015, Two terms
Date of specification approval	2014

A- Basic Information

Title: Physiology of microorganisms and Free reading	Code: 1523
	Lecture: 2
Tutorial:	Practical:
Total:	
Coordinator	Prof. DrMetwaly Abdel-Azeem
Other Staff	Prof. Dr. Essam El-Deen Mohamed Abo- Kassem
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (first term) 14 x 1h lectures (second term)

B- Professional Information

course aims:

Provide students with the fundamental principles of heat stress and spore dormancy in fungi as two important physiological criteria. Give the students an opportunity to explore different new subjects to be updated within their science areas.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the strategies used by fungi to overcome the heat stress.
- A2. Define the different types of proteins and other growth factors that contribute to

overcoming heat stress.

A3. Explain some consequences of fungi spores differentiation after dormancy.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Illustrate the principles, underlying physiology of fungi in response to different growth conditions especially heat.
- B2. Evaluate the metabolic response of fungi to environmental stress in a manner that may recognize unknown metabolites or physiological process.

c- Professional and practical skills

There's no practical skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Gain both written and verbal skills about microbial physiology.
- D2. Use databases and library search methods

3. Contents

	Free reading							
Week	Торіс							
1	Discussions on the topics of the course							
2	Distribution of assignments of basic molecular genetics							
3	Control of gene expression							
4	The genetics of flowering plant							
5	Tissue specific gene expression							
6	Gene cloning protocols							
7	Gene transfer methods							
8	Applications of recombinant DNA							
9	Methods of gene transfer							
10	Breeding for drought resistance							

11	Mutations and genome shuffling
12	Introduction to molecular markers
13	Types of molecular markers
14	Applications of molecular markers
15	Presentation of assignments
	Physiology of microorganisms
Week	Торіс
1	Introduction about the fungi stress protein
2	Heat shock protein (hsp)
3	Heat shock protein as Chaperons (hsp 70, hsp80 and hsp 60)
4	Heat shock protein: proteases (hsp 100 and ubiquitin)
5	Heat shock protein with unknown fuctions (including $\alpha\text{-Crystallin-related}$ proteins and other heat shock proteins)
6	Heat shock protein: Glycolysis and respiration
7	Heat shock protein: Oxidative damage
8	Open Discussion
9	Heat shock transcription factors
10	Cellular effects of Heat shock protein
11	Respiration and energy generation and splicing of mRNA precursors
12	Heat shock protein and development (differentiation)
13	Heat shock protein and trehalose accumulation
14	Open discussion about the previous topics
15	Assessments

4. Teaching and learning methods

a.	Lectures	\boxtimes
b.	Discussion	\boxtimes
c.	Self learning	\boxtimes
d.	Practical training /	
	laboratory	

		e. Semina:	r / Worksho	p		
		f. Class A	ctivity		-	
5. Stud	ent assessmen	t methods				
Written final	exam	to assess	KU, I			
Practical		to assess				
Assessment	schedule	_				
ssessment 1	Practical e	xam		Week		
ssessment 2	Final exam	1		Week	16	
Weighting of	assessments					
	Final-term E	xamination			100	%
	Practical Exa	amination				%
	Total				100	%
Kempken and		06) Gentechnik I.Griffin, Second				diley & Sons, Inc.,
Recommend	ed books					
-	shers of science Wiley and sons	•	riodicals, e.g	g Spring	ger Verlag	g, Academic press,
Web sites						
http://www.	google.com					
http://www.e	emc.maricopa.	edu/faculty/far	abee/biobk,	[/] BioBool	dnamo	LGEN.html
http://www.l	earn4good.co	m/bookstore/ge	enetics_boo	ks_cds_f	or_acade	emic_students.htm
Г	ities required	for teaching ar	nd learning			
Electronic c	opies of pas	t exam papers	and exam	iple ass	essmen	ts.
Computer A	ided, such a	s E-mail, onlir	ne confere	nce, da	ta show	<i>1</i> .

Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Prof. Dr. .Metwaly Abdel-Azeem Prof. Dr. Essam El-Deen Mohamed

Head of Department: Prof. Dr. Alaa Abou-Zeid

Prof. Dr. Alaa Abou-Zeid

Date: / 8 / 2014

Course Contents - Course ILOs Matrix

Course code:1523, course title: : Physiology of microorganisms and Free reading

					Cour	se outc	omes ILOs		
Course Contents	Weeks	Knowledge and nderstanding			Intellectual		Practical	Tranferrable	
Free reading		A1	A2	А3	B1	B2		D1	D2
Discussions on the topics of the course	1	√	√	√	~	V		√	√
Distribution of assignments of basic molecular genetics	2	√	√					✓	~
Control of gene expression	3	√	√			√			
The genetics of flowering plant	4	√	√						
Tissue specific gene expression	5	√	√	√	√	√		√	√
Gene cloning protocols	5	√				✓		√	√
Gene transfer methods	6							√	√
Applications of recombinant DNA	7					√		√	√
Methods of gene transfer	7	√	√	√	✓	√		√	√
Breeding for drought resistance	8	√	√	√	√	√		√	√
Mutations and genome shuffling	8	√	√					✓	√
Introduction to molecular markers	9	√	√					✓	✓
Types of molecular markers	10	√	√	√	√	✓		√	→

A 1: .: C			I	I			1		
Applications of molecular markers	11	V				✓		•	V
Presentation of assignments	12	✓				✓		√	√
Discussions on the topics of the course	13	√	√	√	√	√		✓	√
Distribution of assignments of basic molecular genetics	14	✓	✓	✓	✓	✓		√	✓
Control of gene expression	15	✓	✓	✓	√	✓		✓	✓
Physiology of Microorganisms								√	
Introduction about the fungi stress protein	1	✓	√	√		✓		√	√
Heat shock protein (hsp)	2	√				√		√	√
Heat shock protein as Chaperons (hsp 70, hsp80 and hsp 60)	3	√	√	√		✓			√
Heat shock protein: proteases (hsp 100 and ubiquitin)	4	√				√		√	√
Heat shock protein with unknown fuctions (including α- Crystallin-related proteins and other heat shock proteins)	5	√	√		>	✓		~	√
Heat shock protein: Glycolysis and respiration	6	√	√		√	√		✓	√

Heat shock protein: Oxidative damage	7	√	√	√	√	✓	√	√
Open Discussion	8	√	√	√	√	✓	√	√
Heat shock transcription factors	9	√	✓			√		√
Cellular effects of Heat shock protein	10	√	✓			√	√	√
Respiration and energy generation and splicing of mRNA precursors	11	√	√			√	√	√
Heat shock protein and development (differentiation)	12	√	✓			√	√	√
Heat shock protein and trehalose accumulation	13	√	✓			✓	√	√
Open discussion about the previous topics	14	√				✓	√	√
Assessment	15							

5.2- Learning and Teaching Methods

								Cou	ırse	out	cor	nes	ILO	S						
Learing Method	Knowledge and Understanding				Intellectual Skills				Professional and Practical Skills				General and Transferable Skills							
	A1	Α2	А3	Α4	Α5	В1	В2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧		٧		٧							٧	٧		٧	
Discussion (Brain Storming)	٧	٧	٧		٧		٧		٧	٧						٧			٧	٧
Self-learing (Essay)	٧	٧		٧		٧		٧								٧	٧			
Field Trips																				
Practical																				

5.3- Assessment Methods

Assessment Methods	Course outcomes ILOs																			
	Knowledge and Understanding				Intellectual Skills				Professional and Practical Skills				General and Transferable Skills							
	A1	A2	А3	Α4	A5	B1	B2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧			٧			٧	٧										
MCQ																				
Student Activity																				
Practical																				

Course coordinator:

Prof. Dr. .Metwaly Abdel-Azeem Prof. r. Essam El-Deen Mohamed

Head of Department: Prof. Dr. Alaa Abou-Zeid

M. Sc. Course specifications of Plant Physiology

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014-2015, first term
Date of specification approval	2014

A- Basic Information

Title: Ion absorption transport, water relations and stomata	Code:1524
	Lecture: 2
Tutorial	Practical:
Total:	
Coordinator	Prof. Mahmoud Abou Elyazeed Abd Elhaak
Other Staff	Prof. Mohamed Nabih El-Shourbagy
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (first term)
	14 x 1h lectures (second term)

B- Professional Information

Course aims:

Teach the students the relationship between plant water relation and mineral nutrition . Explore the recent fundamental principles of plant water relationships.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the forces that control water movement.
- A2. Identify the relationship between osmosis and plant nutrients.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

B1. Discriminate between solution as free and in the cell suspension and their

effect by mineral salts

- B2. Demonstrate the capacities of osmosis and osmoregulation
- B3. Analyze the factors controlling nutrients translocation
- B4. Critically evaluate literature in water relations.

c- Professional and practical skills

There's no practical skills	

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Use the internet
- D2. Prepare a research plan (proposal)
- D3. Gain both written and oral communication skills.
- D4. Use databases and library search methods

3. Contents

•	Water relations and stomata
Week	Topic
1	Structure of water molecule
2	Physical and chemical characterizes water
3	Potentials controlling water movement through the plants
4	Diffusion and forces controlling it
5	Osmosis and osmoregulation capacities and demand
6	Osmosis equations and plant state
7	Part two: Ion absorption oermiability
8	Permeability
9	Identification of plant nutrients
10	Nutrient absorption factors and interaction
11	Nutrients translocation controlling factors
12	Factors affecting nutrients balances
13	Nutrients deficiency and plant activity
14	Ion stress and plant growth
15	Assessment

4.	Teaching	and	learning	methods
			-	

a. Lectures	\boxtimes
b.Practical training / laboratory	
c. Seminar / Workshop	
d.Class Activity	-

5. Student assessment methods

Written final exam	to assess	Ku, I
Practical	to assess	

Δ	SSE	255	me	nt	sc	hec	lul	le

Assessment 1	Practical exam	Week		
Assessment 2	Final exam	Week	16	
Weighing of ass	sessments	1		
I	Final-term Examination		100	%
	Practical Examination	-		%
	Total	-	100	%
6. List of Course notes	references	L		I
	ents are provided with a limited a area, but then are expected to sear			
Essential books	(text books)			
Recommended	books			
Kramer, A. 19	89: Plant water relationships, Blckv	vell leto	d.	
	and Mandell, S. R. The pocket han nomson Corporation, USA, 2004.	dbook f	or biolog	y Ed. Michael
Web sites				
http://www.god	ogle.com			
	c.edu.eg/v2/libraries/			
www.thomsor	nrights.com es required for teaching and learning			
	es, such as the library.			
Electronic copie	es of past exam papers and example ass	essment	s.	
Computer Aideo	d, such as E-mail, online conference, da	ta show.		
Course web pag	ge, Digital camera for images collections	as a toc	ol for active	e learning.
Course coordinate	ator:			
Prof. Mahmoud	Abou Elyazeed Abd Elhaak			
Head of Depart				
Prof. Dr. Alaa Al	bou-Zeid			

Date: / 8 / 2014

Course Contents – Course ILOs Matrix

Course code: 1524, course title: Ion absorption transport, water relations and stomata

		Course outcomes ILOs														
Course Contents	Wee ks	ar nders	rledge nd standi	lı	ntell			utco		tical		Tranferrable				
Water				D	D	В	Ь	С	С	С	С	_	_	_	_	
relations and stomata		A1	A2	В 1	B 2	3	В 4	1	2	3	4	D 1	D 2	D 3	D 4	
Structure of water molecule	1	~	~	✓	✓	✓	✓					√	√	√	✓	
Physical and chemical characterize s water	2	✓	✓	✓	✓	✓	✓					√	√	√	✓	
Potentials controlling water movement through the plants	3	✓												√	✓	
Diffusion and forces controlling it	4	✓												√	✓	
Osmosis and osmoregulati on capacities and demand	5	✓												√	√	
Osmosis equations and plant state	5	✓												√	✓	
Part two: Ion absorption oermiability	6	✓										✓			✓	
Permeability	7	✓	✓	✓	✓	✓									✓	
Identificatio n of plant nutrients	7				✓	✓	✓					✓	✓	✓	✓	
Nutrient absorption factors and	8	✓	✓	✓	✓	✓	✓						✓	√	✓	

interaction													
Nutrients translocation controlling factors	8	✓	✓									√	✓
Factors affecting nutrients balances	9	✓	✓	✓	√	>	√				√	>	✓
Nutrients deficiency and plant activity	10		✓	✓	√	>	✓				✓		✓
lon stress and plant growth	11		✓	✓							✓		✓
Structure of water molecule	12		✓	✓	✓	✓	✓				✓	✓	✓
Physical and chemical characterize s water	13	✓					✓						✓
Potentials controlling water movement through the plants	14	√	√				✓			✓		\	✓
Assessment	15												

5.2- Learning and Teaching Methods

								Cou	ırse	out	tcor	nes	ILC	s						
Learing Method	Knowledge and Understanding				Intellectual Skills					Professional and Practical Skills					General and Transferable Skills					
	A1	A2	А3	A4	A5	В1	B2	В3	В4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧		٧		٧							٧	٧		٧	
Discussion (Brain Storming)	٧	٧	٧		٧		٧		٧	٧						٧			٧	٧
Self-learing (Essay)	٧	٧		٧		٧		٧								٧	٧			
Field Trips																				
Practical																				

5.3- Assessment Methods

								Co	ours	e ou	tcoı	mes	ILO	s						
Assessment Methods		Knowledge and Understanding A1 A2 A3 A4 A5				Intellectual Skills				Professional and Practical Skills						General and Transferable Skills				
	Α1	A2	А3	Α4	Α5	B1	B2	В3	В4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧			٧			٧	٧										
MCQ																				
Student Activity																				
Practical																				

Course coordinator: Prof. Dr. Mahmoud A. Abd Elhaak

Head of Department: Prof. Dr. Alaa Abou-Zeid

M. Sc. Course specifications of plant Physiology

Department offering the programme

Department offering the course

Academic year / Level

Date of specification approval

Botany

2014-2015

2014

A- Basic Information

Title: Manometric Methods in Metabolism and Nitrogen Metabolism	Code: 1525
	Lecture: 2
Tutorial:	Practical:
Total:	
Coordinator	Prof. Dr.El Sayed Ahmed Morsey Hamada
Other Staff	Prof.Dr. Wedad Abd Elaziz Kasim
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (first term) 14 x 1h lectures (second term)

B- Professional Information

course aims:

To understand the essential topics and use of manometric methods in metabolism. Teach students the principles and concepts of nitrogen metabolism including catabolism, anabolism, manometers, nitrogen fixation, protein structure and function.

2. Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the current knowledge of metabolism (catabolism& anabolism)and manometers.
- A2. Identify how metabolism and manometery are applied to elucidate the mechanisms underlying complex cellular and organismal processes.
- A3. Recognize some detail to the exciting and expanding fields associated with plant structure and function.
- A4 Identify the basics of manometery in plant structure, function and metabolism.

b- Intellectual skills

By the end of the	By the end of the M. Sc. course the graduate must be able to :-											
B1.	Apply the knowledge they have in using manometric methods in											
	metabolism research											
B2.	Assess the merits of contrasting theories and explanations in											
	nitrogen metabolism											
В3.	Evaluate evidence and make critical judgments											
B4.	Develop a reasoned argument											

c- Professional and practical skills

There is no practical skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. acquire, analyze, synthesize, summaries and present information and ideas from a wide range of sources•
- D2. communicate effectively by written, spoken and graphical means using appropriate techniques
- D3. work effectively with a range of types of information technology
- D4. work alone or with others to achieve an objective

3. Contents

nts
Manometric Methods in Metabolism
Topic
Information flow metabolism.
Information flow in catabolism (respiration) and the rate of respiration under
different conditions.
Types of respiration and respiratory quotient (RQ).
Principle of manometric methods.
Application of manometric methods and types of respirometers.
Ganong's respirometer and measuring of the used oxygen during respiration.
Measuring the evolved CO ₂ using Ganong's respirometer.
Anabolism (photosynthesis) and rate of photosynthesis.
Evolution of oxygen during photosynthesis.
Types of Barcroft-Warburg manometer.
Using Warburg manometer in measuring consumed O ₂ during respiration
Using Warburg manometer in measuring O ₂ evolution during photosynthesis.
Research methods in manometry.
Research methods in manometry.
Nitrogen Metabolism
Topic
Nitrogen fixation
Symbiotic nitrogen fixation

3	Non symbiotic nitrogen fixation													
4	Mechanism of nitrogen fixation													
5	Absorption of nitrogen by plants and the nitrate reduction													
6	Inorganic nitrogen													
7	Organic nitrogen (amino acid, amides, amines, nitrogen bases and nucleotides)													
8	Protein structure and function													
9	Functional classification of proteins: 1-regulation and transport,													
10	2- storage proteins,													
11	3- movement and protective proteins,													
12	5- structural proteins,													
13	6- catalytic proteins													
14	Research methods in nitrogen metabolism.													
15	litrogen fixation													
4.	aching and learning methods													
	a. Lectures													
	b. Practical training / laboratory													
	c. Seminar / Workshop													
_	d. Class Activity -													
	Student assessment methods n final exam to assess Ku,I													
Practic														
L	ment schedule													
Assessment														
Assessment														
	ing of assessments													
	Final-term Examination 100 %													
	Practical Examination %													
	Total 100 %													
6. Cou	rse notes													
Organi	c and Biological Chemistry (Hardcover)													
by Johi	n R. Holm. Publisher: John Wiley and Sons, Inc. New York, Chichester, Brisbane,													
	o, Singapore (1996)													
	liochemistry (Hardcover)													
	nes Bonner and Joseph E. Varner: Academic Press New York. San Francisco. London.													
, ,	3 rd edition.													
	Physiological Ecology (Hardcover)													
	ambers, F. Stuart Chapin III and Thijs L. Pons: Springer- Verlag New York Inc. (1998) ial books (text books)													
	c and Biological Chemistry (Hardcover)													
_	n R. Holm. Publisher: John Wiley and Sons, Inc. New York, Chichester, Brisbane,													
-	o, Singapore (1996)													
	siochemistry (Hardcover)													
	les Bonner and Joseph E. Varner: Academic Press New York. San Francisco. London.													
	3 rd edition.													
, , ,	Physiological Ecology (Hardcover)													
	ambers, F. Stuart Chapin III and Thijs L. Pons: Springer- Verlag New York Inc. (1998)													
Recom	mended books													
Molecu	ular Biology of the Cell (Hardcover)													
	Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter.													
Publish	ner: Garland Science; 5 edition													

Web sites

http://wikipedia

http://www.rothamsted.bbsrc.ac.uk/notebook/courses/guide/

http://www.ncbi.nlm.nih.gov/

http://us.expasy.org/

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Computer Presentations and Writing Boards
- Ganong's and Warburg manometers.
- Data show or LCD.

Course coordinator:

Prof. El Sayed Ahmed Morsey Hamada

Head of Department:

Prof. Dr. Alaa Abou-Zeid

Date: / 8 / 2014

Course Contents – Course ILOs Matrix

Course code:1525, course title: Manometric Methods in Metabolism and Nitrogen Metabolism

_						С	ours	e out	com	es ILC	Os						
Course Contents		Knov Nde	vledg			ı	Intellectual				actio	al	Tranferrable				
Manometric Methods in Metabolism		A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	C 1	C 2	C 3	D 1	D 2	D 3	D 4	
Information flow metabolism.	1	V	V	√	V	✓	✓	✓	✓				√	√	✓	✓	
Information flow in catabolism (respiration) and the rate of respiration under different conditions.	2	✓ ·	✓ ·	✓	✓ ·	✓									✓	✓	
Types of respiration and respiratory quotient (RQ).	3				✓	✓	✓	✓								✓	
Principle of manometric methods.	4				✓	✓	✓	✓								✓	

Application of manometric methods and types of respirometers.	5	√	√	√	√								✓
Ganong's respirometer and measuring of the used oxygen during respiration.	5	✓	✓	✓	✓					✓	✓	✓	✓
Measuring the evolved CO ₂ using Ganong's respirometer.	6	√	√	√	√					√			✓
Anabolism (photosynthesi s) and rate of photosynthesis .	7	√								✓	✓	✓	✓
Evolution of oxygen during photosynthesis	7	√										✓	✓
Types of Barcroft- Warburg manometer.	8	√				√		√				✓	
Using Warburg manometer in measuring consumed O ₂ during respiration	8	√		√	√	✓						√	
Using Warburg manometer in measuring O ₂ evolution	9	✓		√	√	✓				✓	✓	√	√

during											1				
photosynthesis															
Research		✓	✓	✓	√										
methods in	1					✓	✓	✓	✓						
manometry.	0														
Research		✓			✓										
methods in	1					✓									
manometry.	1														
Information	1	✓			√										
flow	2					✓									
metabolism.															
Information		✓			√										
flow in catabolism															
(respiration)	1														
and the rate of	3					✓	✓	✓	✓			✓	✓	✓	✓
respiration															
under different															
conditions.															
Types of		√	√	√	√										
respiration and	1					✓	✓	✓	✓			✓	✓	✓	✓
respiratory	4														
quotient (RQ).															
Nitrogen															
Metabolis															
m															
Nitrogen	1	√	√	√	✓	√						✓	√	✓	✓
fixation															
Symbiotic						✓								✓	✓
nitrogen	2														
fixation															
Non symbiotic						✓								√	√
nitrogen	3														
fixation															
Mechanism of	4	✓	✓	✓	✓	✓								✓	✓
nitrogen															

fixation														
Absorption of nitrogen by plants and the nitrate reduction	5	✓	✓	✓	✓	✓								✓
Inorganic nitrogen	6	✓			✓	✓					√	√	√	√
Organic nitrogen (amino acid, amides, amines, nitrogen bases and nucleotides)	7	✓			✓	✓					✓	✓	✓	✓
Protein structure and function	8	√	√	√	√									✓
Functional classification of proteins: 1-regulation and transport,	9	√	√					√	√		√	√	√	√
2- storage proteins,	1	✓	√					✓	✓			√	√	√
3- movement and protective proteins,	1	√			√	√	√							
5- structural proteins,	1 2				✓				✓		√	✓	✓	√
6- catalytic proteins	1				√	√						√	√	V
Research methods in nitrogen metabolism.	1 4	√	√	√			√	√	√		✓	V		

Nitrogen	1		✓	✓	✓	✓	✓	✓		✓		✓
fixation	5											
Assassamant	1											
Assessement	6											

5.2- Learning and Teaching Methods

								C	our	se c	utco	mes	ILO	s						
Learing Method			_	ge ar ndir		Ir	nte S	lled kill		al		nd I	essi Prac Skill	tica				_	al an erabl Ils	-
	A1	A2	А3	Α4	A5	B1	B2	В3	В4	В5	C1	C2	С3	C4	C 5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧		٧		٧							٧	٧		٧	
Discussion (Brain Storming)																				
Self- learing (Essay)																				
Field Trips																				
Practical																				

5.3- Assessment Methods

								Co	ours	e ou	tco	mes	ILO	s						
Assessment Methods			wle and rsta			I	nte S	lled skill		al	_	nd I	ess Pra kill	ctic			Γra		al an erabi iis	-
	A1	A2	А3	Α4	Α5	B1	B2	В3	В4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧			٧			٧	٧										
MCQ																				
Student Activity																				
Practical																				

Course coordinator: Prof.Dr. El Sayed Ahmed Morsey

Head of Department: Prof. Dr. Alaa Abou-Zeid

Tanta University, Faculty of Science

M. Sc. Course specifications of Plant Physiology

Department offering the programme

Department offering the course

Academic year / Level

Date of specification approval

Botany

2014-2015, Two terms

2014

A- Basic Information

Title: Computer	Code: 1527
	Lecture: 3
Tutorial:	Practical: -
Total:	
Coordinator	Prof. Mohamed El-Awady
Other Staff	Prof. Mahmoud Kamel, Prof. Ahmed
	El-Shishtawy, Prof. Qadry Zakaria
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	Lecture: 28 x 1h lectures
	Practical: 28 x 1h lectures

B- Professional Information

Course aims:

Develop their capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies. Underpin academic work throughout postgraduate studies. Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.
- A2. Arrange powerful presentation using sophisticated software packages.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Integrate different application programs to develop effective information analysis and presentation.
- B2. Solve scientific problems using computer programming

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C5. Use a number of computer packages to present information.
- C6. Perform necessary graphical, statistical and frequency analyses of different types of data.
- C7. Use of different internet resources.
- C8. Use of different photo enhancing and manipulation techniques.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

D7. Use the internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential-logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Lecture 6-7	Creating powerful present etc and different attract	entation including charts, images, video, tive animations							
	Assignment 3 : Using Po	werPoint program							
	Design a real and power skills	ful presentation with different acquired							
Lecture 8-9	Use of internet capabilit	ies and searching engines							
	Assignment 4: Using the	Internet							
	Life search on the intern	et for some real information							
Lecture 10-11	Creating Data Base and r	elated Queries and Reports							
	Assignment 5: Using App	olication programs							
	Creating a real Data Bas to extract useful informa	e and apply different queries and reports ation							
Lecture 12-13	Computer programming	language							
	Assignment 6: Programn	ning using Visual Basic 6							
	Solving real problems us	ing a computer language							
Lecture 14-15	Photo manipulation and	enhancement using the photoshop							
	Assignment 7: Using the	Photoshop program							
	Practicing on manipulati	on and enhancing of images							
Lectures 16		quency analysis using Fourier analysis on searching for periodicities							
	g and learning methods 6. Lectures 7. Practical trainin 8. Seminar / Work 9. Class Activity								
5. Student : Written final example :	assessment methods m to assess K	U, I							
Practical	to assess P								
Semester work	to assess -								

Assessment schedule

Assessment	Scriedule			
Assessment 1	Practical exam	Week	15	
Assessment 2	Final exam	Week	16	
Weighing of	assessments			
- 0 0 -	Final-term Examination	Γ	60 %	
	Practical Examination		40 %	
	Semester work			
	%			
	Total		100 %	
6. List Course notes	of references	_		
	to students at each section describe ok(s) recommended.	the tasks to b	e completed, tl	nerefore no
Essential boo	ks (text books)			
Recommende	ed books			
Web sites				
	ities required for teaching and lear	ning		
	Video and Overhead as and writing Boards			
	computer scientific software package	ges.		
Course coord	linator:			
Prof.Dr. Mo	hamed El-Awady			
Head of Depa	artment:			
Prof. Dr. Ala	aa Abou-Zeid			

/ 8 /2014

Date:

Tanta University, Faculty of Science

Course Contents - Course ILOs Matrix

Course code: 1527, course title: Computer

	Course	code:	1527,							
				Co	ourse o	utco	mes	ILOs		,
Course Contents	Weeks	Know	ledge							
course contents	Weeks	ar	nd	Intelle	ctual		Prac	tical		Tranferrable
		nderst	anding							
Computer		A1	A2	B1	B2	C1	C2	C3	C4	D1
Methods for										
graphical										
representations,	1	✓	✓	✓	√	✓	✓	✓	✓	1
Data analysis	1	•	•	,	•	•	•	•	•	·
and Data										
modeling										
Assignment 1:										
Using										
Application										
programs										
Calculation of										
Slope and										
intersection of										
lines ,										
Best fitting for	2	✓								
data,	_									
Extracting										
Trend, and										
Equations for										
acquired data										
(linear –										
exponential-										
logarithmic										
etc)										
Statistical Data	3-5	✓								
analysis										
Assignment 2:										
Using										
Application										
programs										
Apply some										
statistical		✓								
function such as										
Average,										
Median, STDEV, and Correlation										
on a simulated										
data										
Creating										
powerful										
presentation	6-7	✓				✓	✓	✓	√	✓
including	,									-
charts, images,										
charts, illiages,	l					<u> </u>	<u> </u>	<u> </u>		

			1			1	I	I		
video, etc and										
different										
attractive										
animations										
Assignment 3:										
Using										
PowerPoint										
program										
Design a real		\checkmark						✓	✓	✓
and powerful										
presentation										
with different										
acquired skills										
Use of internet										
capabilities and	8-9	✓	✓					✓	✓	✓
searching										
engines										
Assignment 4:										
Using the										
Internet										
Life search on		\checkmark	✓	✓	✓	✓	✓	✓	✓	✓
the internet for										
some real										
information										
Creating Data										
Base and		,								
related Queries	10-11	✓	✓					✓		√
and Reports										
Assignment 5:										
Using										
Application										
programs										
Creating a real		./	./					✓		
Data Base and		•	*					*		•
apply different										
queries and										
reports to										
extract useful										
information										
Computer		_								
programming	12-13	✓		✓	✓					✓
language										
Assignment 6:										
Programming										
using Visual										
Basic 6		✓							✓	✓
Solving real										
problems using										
a computer										
·			•		•					i

languag										
Photo										
manipulation										
and	14-15	√	1	✓	√	1				/
enhancement	14-13					•				
using the										
photoshop										
Assignment 7:										
Using the										
Photoshop										
program		✓					1	√	✓	√
Practicing on		,								,
manipulation										
and enhancing										
of images										
Introduction to										
Data frequency										
analysis using										
Fourier analysis										,
and Fourier	16			✓	✓					✓
transformation										
searching for										
periodicities										
Assessement										

Learning and Teaching Methods

			Course outcomes ILOs																	
Learing Method		Knowledge and Understanding			-		lled kill		al		rofo nd F S		ctic			Tra	nera nsfe Skil	rab	-	
	A1	A2	А3	Α4	A5	B1	B2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧		٧	٧		٧										
Discussion																				
(Brain																				
Storming)																				
Self-learing																				
(Essay)																				
Field Trips																				
Practical											٧	٧	٧	٧	٧					

Assessment Methods

		Course outcomes ILOs																		
Assessment Methods	U	Knowledge and Understanding				S	lled kill	s		ar	nd I S	Pra kil		al	-	Γra	neral nsfe Skill	rab s	le	
	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧	٧	٧		٧													
мсо																				
Student Activity																				
Practical											٧		٧		٧					
Assessment Methods																				

Course coordinator: Prof.Dr. Mohamed El-Awady

Head of Department: Prof. Dr. Alaa Abou-Zeid

M.Sc. Programme of Genetics

Tanta University, Faculty of Science

M. Sc. program specifications of Genetics

Department offering the program	Botany Department
Academic year	2014-2015
Date of specification approval	08/2014
A- Basic Information	
Program title:	M. Sc. degree in Botany (Genetics)

Program type

Coordinator:

Prof. Dr. Adel R. El-Shanshoury

External Evaluator (s):

Prof.Dr. Mahmoud M. Sakr. Egyptian Academy of Science, ENC

QAA Benchmarking Standards

Academic Reference Standards (ARS)

Program References Bioscience, Egyptian Code of Assessment

Date of Delivery Every year in September

Review Date Internal Periodic Review, Summer 2014

B- Professional Information

5. Program aims

Aims

To understand main aspects of chromosome biology, learn modern genetics techniques, provide intense hands-on training in Recombinant DNA Methods and Genetic Engineering, explore theory and practice of population genetics, characterize and arranging plants in an orderly manner, improve theoretical and practical fundaments of cell and tissue culture techniques, and know the basic statistical procedures used to analyze data

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should have acquired knowledge and understanding of the underlying concepts and principles of:

- A26. Chromosome biology
- A27. Recombinant DNA methods, and chemistry of protein synthesis and nucleotides metabolism.
- A28. Genetic engineering,
- A29. ||Population genetics, and characterizing and arranging plants in an orderly manner
- A30. Cell and tissue culture techniques
- A31. IT and bbasic statistical procedures used to analyze data

B. Intellectual skills:

At the end of this module students should have acquired the ability to:

- B6. Think logically and organize tasks into a structured form.
- B7. Assimilate knowledge and ideas based on wide reading and through the internet.
- B8. Understand the evolving state of knowledge in a rapidly developing field.
- B9. Construct and test hypothesis.
- B10. Plan, conduct and write a report on an independent research project

C. Professional and practical skills

At the end of this module students should have acquired the following skills:

- C26. Conduct basic techniques and methods to the studies and research in cytogenetics and population genetics.
- C27. Be able prepare written protocols for experimental procedures and collect and interpret data from experimental observations and measurements
- C28. Be able to design and conduct individual and shared research projects both in the laboratory and in the field.
- C29. Be able to use computer software and web sites and other forms of information technology for data collection, analysis and presentations

D. General and transferable skills:

- D45. Work in a team and be able to cooperate with others
- D46. Demonstrate written and verbal communication skills using IT in work and in life
- D47. Have knowledge of accounting and management.
- D48. Ability to manage time and resources
- D49. Present ideas and arguments in a structured manner

E. Teaching and learning

Knowledge will be developed through

- 2. Lectures
- 3. Practicals

F. Assessment

A wide variety of assessment methods are used

- 1. Written exam.
- 2. Practical exam.

3. Academic Reference Standards:

The Academic Reference Standards for the award of master in Plant Genetics as well as the attributes and capabilities of the graduate to provide students with the main concepts of plant genetics, teach and train students the principles and main concepts in genetics, understand the basic molecular tools of plants, protein and DNA and to know the basic statistical procedures used to analyze data.

I. Knowledge and Understanding:

Approaches to study and forms of subject knowledge likely to be common to all bioscience degree programmes will include the following:

- knowledge and understanding of the processes and mechanisms of life
 - From molecular to cellular.
 - From Organism to community.
- engagement with the essential facts, major concepts, principles and theories associated with the chosen discipline.
- understanding of information and data, and their setting within a theoretical framework.
- familiarity with the:
 - Terminology.
 - Nomenclature.
 - · Classification systems as appropriate.

- Methods of acquiring, interpreting and analysing biological. information with a critical understanding of the appropriate contexts for their use through the:
 - Study of texts.
 - Original papers.
 - Reports and data sets.
- Developing knowledge about the diversity of life and its evolution.
- Knowledge of a range of practical techniques and methodologies, including
 :
 - Data analysis.
 - Use of statistics.
- Engagement with current developments in the biosciences and their applications, and the philosophical and ethical issues involved.
- The applicability of the biosciences to the careers to which graduates will be progressing.

II. Skills

C. Generic skills

- an appreciation of the complexity and diversity of life processes through the study of organisms, their molecular, cellular and physiological processes, their genetics and evolution, and the interrelationships between them and their environment.
- the ability to read and use appropriate literature with a full and critical understanding.
- the capacity to give a clear and accurate account of a subject.
- critical and analytical skills: a recognition that statements. should be tested and that evidence is subject to assessment and critical evaluation.
- the ability to employ a variety of methods of study in investigating, recording and analyzing material.
- the ability to think independent, set tasks and solve problems.

D. Kev skills

The specific key skills that should be developed in bioscience degree courses are subdivided into:-

1. Intellectual skills

- Recognising and applying subject-specific theories, concepts or principles. For example:
 - The relationship between genes and proteins.
 - The nature of essential nutrients in microbes, cells, plants and animals;
- Analyzing and summarizing information critically, including published research or reports;
- Obtaining and integrating several lines of subject-specific evidence to formulate and test hypotheses;
- Applying subject knowledge and understanding to address familiar and unfamiliar problems

2. Practical skills

- Designing, planning, conducting and reporting on investigations. The data may be obtained through:
 - individual
 - group projects

- Obtaining, recording, collecting and analyzing data using appropriate techniques in the field and/or laboratory, working by themselves or in a group
- Undertaking field and/or laboratory investigations of living systems in a responsible, safe and ethical manner. For example, Students must pay due attention to risk assessment, relevant health and safety regulations, and respect for animal & plant life
- In some Bioscience degrees, graduates will learn to respect rights of access, for example:-
- In field work or in order to map the genes of a community, family or group of plants or animals, including humans. They should show sensitivity to the impact of investigations on:
 - the environment.
 - the organisms under investigation.
 - other stakeholders.
- Preparing, processing, interpreting and presenting data, using appropriate qualitative and quantitative techniques:
 - Statistical programmes.
 - Spreadsheets.
 - Programs for presenting data visually.
- Solving problems by a variety of methods including the use of computers.
- Using the internet and other electronic sources critically as a means of communication and a source of information.

3. Interpersonal and teamwork skills

- Identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles;
- Recognising and respecting the views and opinions of other team members;
- Negotiating skills;
- Evaluating performance as an individual and a team member; evaluating the performance of others;
- Developing an appreciation of the interdisciplinary nature of science and of the validity of different points of view.

4. Self-management and professional development skills

- Developing the skills necessary for self-managed and lifelong learning (e.g. working independent, time management and organisation skills);
- Identifying and working towards targets for personal, academic and career development;
- Developing an adaptable, flexible, and effective approach to study and work.

4.a. Program duration: Minimum two years.

4.b.Program Structure:

4. b.1. The First Preliminary Year:

All applicants admitted to the master's program are required to study 6 selected theoretical courses and one practical course approved by the department council from the master courses offered by the department for one academic year. A part of the M.Sc. courses offered by the Botany Department, the student should study a course in English language for a minimum one hour per week. Albeit, students who have taken equivalent English language course may be exampled from it upon the recommendation of the Faculty Council.

No. of hours per week: 12 Lectures and 6 hours practical

The registration for the preliminary year takes place in October, and the final exam. Is held once a year (June) in the date approved by the Faculty Council.

Grade Assessment:

Final Written Exam.60%

Final Practical Exam 40%

*< 60% failed

60-69 passed, 70-79 good, 80-89 very good, >90% excellent

4. b.2. The second year:

If the student passes the final examination, he/she will be a legible for continuation and registration to carry out research and starts thesis preparation. The thesis could be submitted after one year.

5. Program Contents and structure:

N	Code	Course Name	Lecturer
		Molecular Biology and	Prof. Dr. Mohamed EL-Anwar Osman
1	1553		Prof. Dr. Soad El-Feky
		Biochemistry	Dr. Mohamed Elhiti
			Prof. Dr. Adel R. El-Shanshoury
2	1551	1 Cytogenetics	Prof. Dr. Hanan Ibrahem
			Dr. Marowa Hamouda
3	1552	Genetic Engineering	Prof. Dr. Safaa A. Radwan
3	1332	defielic Liigifieerifig	Dr. Mohamed Elhiti
		Donulation gangties and	Prof. Dr. Adel R. El-Shanshoury
4	1554	Population genetics and Cell and Tissue Culture	Prof. Dr. Reda Gaafar
		Cell and Tissue Culture	Dr. Mohamed Elhiti
		Statistics and	Prof. Dr. Mhamoud Abu-Elyazied
5	1558	experimental taxonomy	Prof. Dr. Adel El-Shanshoury
		experimental taxonomy	Prof. Dr. Reda Gaafar
6	1557	Computer	Prof. Dr. Mohamed El-Awady.

Level 1	Obligatory Four Courses									
Code	Course Title	Term	1	Tern	n 2	-Cred.				
Proposed		Thr	Pract	Thr	Prac	-crea.				
1551	Cytogenetics	1	2	1		3				
1552	Genetic Engineering	1		1		2				
1553	Molecular Biology & Biochemistry	1		1		2				
1554	Population genetics & Plant Cell and Tissue Culture	2	2	2		4				
1557	Computer	1	1			2				
1558	Biostatistics & Experimental taxonomy	2		2	4	4				

^{*}Failed students can repeat the course (s) only once.

Course Contents of Plant Genetics

Course Co		s of Plant Genetics
Course Name	Co de No	Contents
Molecul ar Biology and Biochem istry	15 53	Information flow in the cell, Information flow in the cell, Structure and organization of nuclear genes, Structure and organization of nuclear genes, Replication and repair of nuclear genes, Replication and repair of nuclear genes, Expression of nuclear genes, Chloroplast genome, Mitochondrial genome, Chloroplast genome, Mitochondrial genome, Molecular basis of genetic changes, Molecular basis of genetic changes, Molecular biology research methods, Molecular biology research methods.
Cytogen etics	15 50	Cell Structure., Cell function and bioenergy, Functional and strcutral chloroplast, Functional and strcutral mitochondria, Functional and strcutral nucleus, Choromosomal structure and function, Behavior of chromosome in mitosis, Behavior of chromosome in meiosis, DNA organization and gene structure, DNA organization and gene structure, Karyotyping. Idograme, Identification according to karyotyping and idograme, Role of chromosome in diagnosis to some genetic diseases.
Genetic Engineer ing	15 52	Revision of basic molecular genetics, Reviewing gene cloning procedures, Discussions on the topics of the course and distribution of assignments, Methods of gene transfer to plants, Methods of gene transfer to microorganisms, Methods of gene transfer to animals, Application of gene technology in basic research, Application of gene technology in pharmaceutical industry and health care, Application of gene technology in plant breeding, Molecular markers in genetic engineering, Bioinformatics in genetic engineering Genetic engineering and biodiversity, Genetic Engineering and bio-safety, Integrated problems and visits to biotechnology centers, Round up discussions on the topics of the course, Presentations of assignments.
Populati	15	Methods of cell and tissue culture, Tissue culture nutrient media,

on Laboratory organization for tissue cultures, Culture of haploid cell, genetics Isolation and fusion of protoplast, Propagation of plants from tissue and Cell cultures, Propagation of plants from fused protoplast, Cytology of cultured cells, Genetic variability through in vitro tissue and cell culture, and Tissue Genetic variability through in vitro tissue and cell culture, Use of tissue cultures in gene transfer. Culture Use of tissue cultures in gene transfer, Use of tissue cultures approach for the production of plants adapted to environmental stress, Use of tissue cultures approach for the production of plants adapted to environmental stress. Stantistices u c150 n and ostatistics as a tool of scientific research expærninpling of attributes enftaequency and probability distributions TaMonromal distribution mpinomial distribution Poisson distribution Tests of significance Round-up discussion on the previous topics Partial examination Introductory note on analysis of variance Data transformations One-way analysis of variance Some basic experimental designs (completely random, randomized complete block and Latin square designs) Two-way analysis of variance Split-plot experimental design Least significant difference (LSD) and least significant range (LSR) tests Round-up discussion on the previous topics Partial examination Simple linear regression Simple linear correlation Rank correlation Curve fitting and method of least squares Multiple correlation Multiple regression Analysis of time series Round-up discussion on the previous topics Round-up discussion on the all topics of the course (part one)

Round-up discussion on the all topics of the course (part two)

Final examination

		Experimental Taxonomy
		Торіс
Genera	prin	ciples
Biotic f	actor	s (positive and negative interactions)
Genetic	fact	ors (morphological characters and variation in phenotype alteration)
The use	of c	nromosome information in plant taxonomy
Chromo	som	e behavior in relation to plant taxonomy
Chromo	som	e banding pattern variation
Pollen	grain	structure variation and taxonomy
The use	of s	ome chemical compounds distribution in plant taxonomy
The imp	orta	nce of DNA hybridization in plant taxonomy
The use	of D	NA contents in plant taxonomy
Importa	nce	of amino acid sequences in taxonomy
Charact	erist	cs of wildlife conservation (e.g. biodiversiy,)
Species	spec	ification resulted from chromosome alteration
Brief de	scrip	tion of the Egyptian species evolution
Comput	15	Visual basic, power point, internet and Photoshop program
er	73	

6.Thesis

Thesis is an essential aspect of M.Sc. program, for partial fulfillment of M.Sc. degree requirements. It is a formal written document representing sustained original research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis must meet precise academic standards and will be reviewed and approved by the candidate's supervising professor and external academic review committee.

The thesis should contain at least the following:

- Title page (title, name of student, university, faculty, name of program, date, supervisors
- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions
- References.

Language of the thesis

The thesis must be written in English language accompanied by a summary in Arabic.

Formation of Examiners Committees

A committee is selected by Botany Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

7-Admission:

An applicant for admission to the master's program should hold Botany B.Sc. degree in science either major with a minimum grade "Good" or double major with a minimum general grade "Good" from any Egyptian or equivalent institute. In addition, all applicants must satisfy the department graduate admission.

8- Evaluation of program intended learning outcomes

Evaluator	Tool	Sample
1 Alumni	Questionnaire	
2- Stakeholders (Employers)	Questionnaire	
3- External Evaluator(s)	Report	

Program coordinator:

Prof. Dr. Adel R. El-Shanshoury

Head of Department:

Prof. AlaaAbou-Zeid

Date: 8/2014

M. Sc. program Plant (Genetics) matrix

Course Title	Co urs		iowl ider				nd	Int ski	telle ills	ectua	al		pro ski	actic ills	al		Ge	nera	ills		
	e	A	A	A	A	A	A	В	В	В	В	В	С	С	С	С	D	D	D	D	D
	cod	1	2	3	4	5	6	1	2	3	4	5	1	2	3	4	1	2	3	4	5
	e	,	,	,	,			,	,	,	,	,	,	,	,	,	,	,	,	,	,
Molecul	153			V													V			V	1
ar	1																				
Biology																					
and																					
Bioche																					
mistry	1.52							.1			.1	.1	.1		.1						.1
Bioche	153					V															
mistry	2																				
A D: 1	1.50	V			,			-			-				,			-		-	-
Bioche	153	V			V			V								V				V	
mistry	3																				
B	153	V	V		1	1		V		V	√	1	V			اء	1	-1	٠	-1	V
Physiol	153	V	٧.	-V	٠,٧	-V		·V	·V	·V	·V	-V	-V			√	-V	√	V	√	V
ogy of Algae	4																				
and																					
Microor																					
ganisms																					
Biostati	153				V	V		$\sqrt{}$						V	V				V		
stics	8				٧	\ \		V	V					٧	١ ،				٧		
Comput	157				V	V				V			V			V					
er	3				٧	\ \				٧	٧		\ \			١ ٧					

Brief Description of Courses for the M.Sc. in Genetics A-Obligatory Courses

2-CYTOGENETICS

- Cell division and cell cycle analysis
- Chemical and architectural structure of chromosomes.
- Chromosomal changes.
- Karyotype analysis.
- Chromosome micro-dissection.
- Karyotype evolution.
- Methods of chromosomal studies.
- Molecular cytogenetics.
- Applications of cytogenetics in plant breeding and evolution.

2- GENETIC ENGINEERING

Principals of recombinant DNA technology.

Enzymes used for genetic engineering.

Cloning and transfer of genes.

Characterization of cloned and transferred genes.

Methods of gene sequencing.

Engineering plants to receive desired traits.

Applications of genetic engineering.

Future prospects in gene manipulation

3-MOLECULAR BIOLOGY

- Information flow in the cell.
- Structure and organization of nuclear genes.
- Replication and repair of nuclear genes.
- Expression of nuclear genes.
- Chloroplast genome.
- Mitochondrial genome.
- Molecular basis of genetic changes.
- Molecular biology research methods.

4- BIOSTATISTICS AND COMPUTER APPLICATIONS

- Frequency distribution
- Standard errors and confidence limits.
- Significance tests.
- Correlation measurements.
- Regression analysis.
- Cluster analysis and principal component analysis.
- Probability and its application in genetic research
- Introduction to basic computer programs used in genetics, systematics and evolution research

B- Optional Courses (four courses, 10 credits only)

5-POPULATION GENETICS

- Quantitative characters.
- Genetic structure of populations.
- Genetic equilibrium.

- Changes in gene frequency.
- Population diversification.
- Genetic variation and speciation.
- Reproduction isolation.
- Stable polymorphisms.
- Estimation of genetic variations.

6- EXPERIMENTAL SYSTEMATICS

- Taxa and species concepts.
- Cytotaxonomy.
- Chemosystematics.
- Molecular systematics.
- Numerical taxonomy.
- Modern phylogenetic methods.
- Preservation of plant material.
- Gene banks.

7- GENETICS AND EVOLUTION

- Historical background.
- The fine structure of the gene.
- Processes of evolutionary changes
- Natural selection.
- Mutation.
- Breeding systems.
- Genome evolution.
- Molecular basis of evolution.
- Factors promoting evolution.
- Biogeography and evolution.
- Biodiversity.

8- BIOCHEMISTRY

Introduction to biomolecules.

Function of proteins and enzymes.

Metabolism of carbohydrates and lipids.

Metabolism of proteins and amino acids.

Information carrying molecules in the cell.

Structure and function of bio-membranes.

Hormones and their role in growth.

Vitamins and their importance.

9- BIOSTATISTICS (Two semester - Theoretical: 1 hour/week, Practical: 2 hours/week)

- Part one: Statistical definitions, sampling of attributes, distributions (Normal, Binomial, Poisson), and tests of significance.
- Part two: Analysis of variance, experimental designs, association between variables, curve fitting and the method of least square, multiple and partial correlation and regressions, and analysis of time series.

9- MICROBIOLOGY

Viruses:

General features of virus reproduction and steps of virus multiplication, reproduction and genetic maps of some important, plant viruses as well as animal and bacterial virus The importance of viruses and the diseases caused by viruses.

• Bacteria:

Major groups of bacteria, molecular systematics and bacterial evolution of bacteria. Industrial and medical bacteriology.

Fungi:

Major groups of fungi, pathogenic fungi, economic importance of fungi, molecular systematics, evolution and uses of fungi.

Micro-algae:

Major groups of micro-algae and their economic importance.

10- MICROBIAL GENETICS

- Organization of viral genome.
- Structure and organization of prokaryotic genome.
- Gene expression in prokaryotes.
- Gene expression in microbial eukaryotes.
- Gene mapping in virus and bacteria.
- Gene mapping in microbial eukaryotes.
- Scientific and practical application of microbial genetics.

11- CELL AND TISSUE CULTURE

Methods used in plant cell and tissue culture.

- Tissue culture nutrient media.
- Laboratory organization for tissue cultures.
- Culture of haploid cells.
- Isolation and fusion of protoplast.
- Propagation of plants from tissue cultures.
- Propagation of plants from fused protoplast.
- Cytology of cultured cells.
- Genetic variability through in vitro tissue and cell culture.
- Use of tissue cultures in gene transfer.
- Use of tissue cultures approaches for the production of plants adapted to environmental stress, and other desired traits.

6. Programme admission requirements

Arrangements for admission are based on the national guidelines with no Faculty control on the number of newly enrolled students.

Candidates must satisfy the general admission requirements of the University, Faculty in Biology and also hold one of the following:

- · General Certificate of Secondary Education (GCSE) in Biology
- GCSE in Biology at grade C or higher.
- International Baccalaureate (GCSE, American Diploma)?

7. Regulations for progression and programme completion

The Faculty has the following system to follow student's progression through the programmes in which they are enrolled.

- To progress from year one to year two or year two to year three or year three to year four, student need to pass in all course units with a maximum of fail in two.
- Student who fails their final examination at the first attempt will be eligible only for a "Pass" degree following any re-set examinations.
- \square Progression from level one to level two:

In order to progress from Level One to Level Two, a student shall normally achieve a threshold performance at part Level One. To gain a threshold performance at Level One, a student shall normally be required to pass in all course units with a maximum of fail in two.

□ Progression from 'Level Two' to 'Level Three:'

To gain a threshold performance in 'Level Two', a student shall normally be required to achieve an aggregate score determined annually by the faculty council, and to pass in all course units. In order to pass from 'Level Two' to Part three, a student shall normally be required to achieve a threshold

of fail in two.
□To pass the Summer Training, students must achieve a non-scored threshold training level base on submission of a formal written non-scored report from the training institution and the supervisor. Students who fail the summer training will (not) be required to transfer to the four year programme.
☐ To obtain the degree at the end of the 'Level Four', student must pass in all course units and achieve at least an overall of 60%.

8. Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1. Senior students	Not applied yet	
2. Alumni	Not applied yet	
3. Stakeholders(Employers)	Not applied yet	
4. External Evaluator(s)(External Examiner(s))	Not applied yet	

Name	Signature	Date
Programme Coordinator:		
Prof. Dr. Adel El-Shanshoury		
(أ.د.عادل الشنشور <i>ي</i>)		/8/2014
Hoad of Ovality Assurance Units		<u> </u>
Head of Quality Assurance Unit:		
Prof. Hoda Kamal		/8/2014
(أ. د.هدي كمال)		
Dean of the Faculty:		
Prof. Tarek Fayed		/8/2014
(أ. د.طارق فايد)		

Tanta University, Faculty of Science

M. Sc. Course specifications of Genetics

Department offering the programme

Department offering the course

Academic year / Level

Date of specification approval

Botany

2014/2015

8/2014

A- Basic Information

Title: Molecular Biology and Biochemistry	Code: 1553
Tutorial:	Practical:
Total:	
Coordinator	Prof. Dr. Mohamed El-Anwar
	Prof.Dr. Soad El-Feky
	Dr. Mohamed Elhiti
Other Staff	
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	1 st semester: 14 x 2h lectures
	2 nd semester: 14 x 2h lectures

B- Professional Information

6. course aims:

Teach advanced subjects of molecular biology and biochemistry including the structure and synthesis and degredation of proteins, nucleic acids and nucleotides.

7. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the current knowledge of plant molecular biology.
- A2. Identify how plant molecular biology is applied to elucidate the mechanisms underlying complex cellular and organismal processes

- A3. Recognize some details in the exciting and expanding fields associated with plant structural and functional genomics.
- A4. Identify the basics of plant gene structure and function.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Analyze the concepts of advanced topics in plant molecular biology and biochemistry.
- B2. Assess the merits of contrasting theories and explanations in biochemistry and molecular Biology

c. There is no practical Skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Acquire, analyze, synthesize, summarize and present information and ideas from a wide range of sources.
- D2. Communicate effectively by written, spoken and graphical means using appropriate techniques.
- D3. Work effectively with a range of types of information technology.
- D4. Work either alone or with others to achieve an objective.

3. Contents

	Section I					
Week	Торіс					
1	Information flow in the cell.					
2	Information flow in the cell.					
3	Structure and organization of nuclear genes.					
4	Structure and organization of nuclear genes.					
5	Replication and repair of nuclear genes.					
6	Replication and repair of nuclear genes.					
7	Expression of nuclear genes.					
8	Expression of nuclear genes.					

9	Chloroplast genome, Mitochondrial genome
10	Chloroplast genome, Mitochondrial genome.
11	Molecular basis of genetic changes.
12	Molecular basis of genetic changes.
13	Molecular biology research methods
14	Molecular biology research methods
	Section II
Week	Торіс
1	Endo- symbiosis and origin of Eukaryotes (Evidence at the Molecular level)
2	Secondary endosymbiosis :Engulfing Eukaryotes (Evidence at the Molecular level)
3	The nucleus
4	Nucleosomes and Transcription
5	Silencers, Steroid receptors and their response elements
6	T cell receptors, Antibody structure
7	Histones and Nucleosomes
8	Histones acetylation and Chromatine Remodling
9	Receptor Mediated Endocytosis
10	Receptor Mediated Endocytosis
11	Proteins translocation into the lumen of the rough endoplasmic reticulum
12	Golgi complex: structure and function
13	Golgi complex: structure and function
14	Formation of receptors
	Biochemistry (Amino acids and Proteins)
Week	Торіс
1	Introduction, classification of amino acids, chemical and physical properties of amino acids
2	Peptides structure, classes of proteins, protein functions

3	The le	evels of prot	ein structure	e, Amino ac	ids met	abolism	
4	Δmm	onia toxicit	v and hynei	r ammonia	Inheri	ted dise	ases of aromatic
		o acid catab			, 111111111	ted disc	uses of aromatic
5	Arom	atic amino a	icid metaboli	ism, Nitrog	en dispo	sal	
6	Deam	ination and	Transaminat	tion			
7	The e	xecution of	excess nitro	gen			
8	Nucle	eic Acids, Nu	cleic acids, N	lucleotide s	structur	e and noi	menclature
9	Purin	e and Pyrim	idine metabo	olism, Pyrin	nidine bi	iosynthes	sis
10		tructure and tic informati		ribonucleic	acid, St	torage an	d transmission of
11	Prote	in Synthesis	, The express	sion of gen	etic info	rmation	
12	The g	enetic code,	, Transcriptio	on			
13	The s	ynthesis of r	ibonucleic a	cid, proteir	synthe	sis in pro	karyote
14	Struc	ture of Euka	ryotic chrom	osome and	l gene		
11.	Teachi	ng and learn	ing methods				
		a.Lectu	ıres			\boxtimes	
		b.Pract	ical training /	laboratory		-	
		c. Semi	nar / Worksho	p			
		d.Class	Activity			-	
12.	Studen	t assessment	methods				
Writter	n final ex	am	to assess	KU, I			
Practica	al		to assess				
Semest	er work		to assess				
Assessi	ment sch	nedule	I	L			
Assessment	1	Practical exa	am		Week	-	
Assessment	2	Final exam			Week	16	
Weighi	ng of as	sessments					
		Final-term Ex	amination			100	%

Described Franciscotion		٦ ۵/
Practical Examination		%
Total	100	%
13. List of references		J
Course notes		
- Course notes and Laboratory manual authorized by of Botany.	the Coun	cil of Department
Essential books (text books)		
- Molecular Cell Biology (Hardcover) by Harvey Lodish, Arnold Krieger, Matthew P. Scott, Anthony Bretscher, Hidde Ploegh, H. Freeman; 6th edition (June 15, 2007		•
Recommended books		
- Molecular Biology of the Cell (Hardcover) Bruce Alberts, Ale Martin Raff, Keith Roberts, Peter Walter. Publisher: Garland		
Web sites		
http://www.rothamsted.bbsrc.ac.uk/notebook/cou	ırses/guid	e/
http://www.ncbi.nlm.nih.gov/		
http://us.expasy.org/		
14. Facilities required for teaching and learning		
 Projectors: Video and Overhead. 		
 Computer Presentations and Writing Boards 		
 Microscopes; Compound microscope. 		
 Microscopic Anatomical Preparations. 		
Library		
 Live plant Morphological Samples 		
Prof. Mohamed El-Anwar		
Head of Department:		
Prof. Dr. Alaa Abou-Zeid		

Date: 08/2014

Tanta University, Faculty of Science

Course Contents – Course ILOs Matrix

Course code:1553, course title: Molecular biology and Biochmestry

Course	Wee															
Contents	ks		Know unde					Inte	ellec	tual			Trai	nferr	able	
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	D 1	D 2	D 3	D 4	D 5
Information flow in the cell.	1	✓		√	✓		✓	✓		✓		√			√	√
Information flow in the cell.	2	√	√	√		√		√				√	√	√	√	
Structure and organization of nuclear genes.	3	V		√	√			√		√		√	√	√		
Structure and organization of nuclear genes.	4		√	√	√	✓	✓		√				V			V
Replication and repair of nuclear genes.	5	√	✓	√	√			√		√	√					√
Replication and repair of nuclear genes.	6	√				✓		✓	√		√	√	√		√	V
Expression of nuclear genes.	7			√	√		✓	✓						√		
Expression of	8	√	√			√	√	√				√	√	√	√	

nuclear genes.																
Chloroplast genome, Mitochondrial genome	9				✓		✓	√				√	√	√	√	✓
Chloroplast genome,	10	√			✓	√	√	√				√	✓	√	√	√
Molecular basis of	11	√	✓	✓	✓	√	√	√				√	✓	✓	√	√
	12															
	13															
	14															
	1															
	2															
The nucleus	3	√		√			✓	✓		✓		✓	✓	✓	✓	√
Nucleosomes and Transcription	4		√		√				√							
Silencers, Steroid receptors and their response elements	5		√			√	√		V			✓	√	√	√	✓
T cell receptors, Antibody structure	6	√	√	√		√	√		√	√	√				√	√
Histones and Nucleosomes	7			√	√		✓	✓							✓	√
Histones acetylation and Chromatine Remodling	8	√	√		√	√	√		√							

· .														1		
Receptor	9	✓			✓	√	✓	✓	√	~		~	✓			•
Mediated																
Endocytosis																
Receptor	10			✓	✓	✓						✓			√	✓
Mediated																
Endocytosis																
Proteins	11	✓	✓			√	✓		√		√	√	√	√	√	
translocation	11								·							
into the																
lumen of the																
rough																
endoplasmic																
reticulum																
	4.0	√	✓	✓	√		√	√				√		√	√	✓
Golgi	12	•	•	•	•		•	•				•		•	V	•
complex: structure and																
function																
Tunction																
Golgi	13	✓	✓	✓	√		✓	✓		✓		✓	√	√	✓	√
complex:																
structure and																
function																
Formation of	14		✓						√		√	√	√		√	
receptors																
Introducation	4	√	√	✓		✓					√	√	√	√	√	✓
Introduction	1	•	V	v		•					V	•	V	•	V	•
, classification																
of amino																
acids,																
chemical																
and physical																
properties of																
amino acids																
Peptides	2		✓	✓	✓	√	√	✓		✓				√	√	
structure,								-								
classes of																
proteins,																
protein																
functions																
	3	✓	√	✓	✓	√	✓	√			√	✓	√	√	√	✓
The levels of	3							-								

	1															
protein structure,																
Amino acids metabolism																
Ammonia toxicity and hyper ammonia, Inherited diseases of aromatic amino acid catabolism	4	√	✓		√	✓			✓	✓		√	√	√	√	
Aromatic amino acid metabolism, Nitrogen disposal	5	√	√	√	√		√	√					√	√	✓	
Deamination and Transaminati on	6	✓	✓	✓	✓			√		✓		✓	✓	✓	✓	
The execution of excess nitrogen	7	√	✓			√		√	✓		√	✓	√	√	✓	*
Nucleic Acids, Nucleic acids, Nucleotide structure and nomenclatur e	8	√	✓	√	√	✓	√		✓	✓		✓	✓	✓	✓	>
Purine and Pyrimidine metabolism, Pyrimidine biosynthesis	9	√	✓													

	1															
The structure and classes of ribonucleic acid, Storage and transmission of genetic information	10	V			V		V	V	~	•	√	√	•	•	V	*
Protein Synthesis, The expression of genetic information	11	√	✓	✓	√	√	√	✓			√	√	✓	√	√	
The genetic code, Transcriptio	12	√	√					√				✓	√	✓	√	
The synthesis of ribonucleic acid, protein synthesis in prokaryote	13	√							√							
Structure of Eukaryotic chromosome and gene	14	√	√	√	√	√		✓		√		✓	✓	√	√	
thesis		✓	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Learning and Teaching Methods

								Co	urse	ou	tcor	nes	ILO	s						
Learing Method	Knowledge and Understanding					lı		lled kill		al	Professional General and and Practical Transferable Skills Skills						-			
	A1	A1 A2 A3 A4 A5			В1	B2	В3	В4	В5	C1	C2	C3	C4	C 5	D1	D2	D3	D4	D5	
Lecture	٧	٧	٧	٧	٧		٧			٧										

Assessment Methods

								Со	urse	ou	tco	mes	ILC)s						
Assessment Methods	Knowledge and Understanding					Ir		lled kill	tua s	al		Professional General an and Practical Skills Skills C1 C2 C3 C4 C5 D1 D2 D3 D4						-		
	A1	A2	А3	Α4	A5	В1	B2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧	٧	٧			✓	✓											

Course coordinator: Prof. Adel El-Shanshoury

Head of Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Genetics

Department offering the programme

Department offering the course

Academic year / Level

Date of specification approval

Botany

2014/2015, first term

08/2014

A- Basic Information

Title: Cytogenetics	Code: 1551
Tutorial:	Practical: 2
Total:	
Coordinator	Prof. Adel Ramadan El-Shanshoury
Other Staff	Prof. Dr. Hanan Ibrahem
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	1 st semester: 14 x 1h lectures
	Practical: 14 x 2h lectures (first semester
	2 nd semester: 14 x 1h lectures
	Practical: 14 x 2h lectures (second semester)

B- Professional Information

8. course aims:

Teach students basic principles and concepts of cell and tissue culture techniques. Provide students with the ability to adapt basic cell and culture procedure to specific research requirements. Teach students the basic principles and concepts of population genetics and related topics, Develop solutions to simple, problems through the application of population genetic theory and principles. Apply the basic principles of population genetics to the analysis of natural and managed systems.

9. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the advantages and limitations of cell culture in the production of plants adapted to environmental stress.
- A2. Describe the range of molecular laboratory techniques and standard statistical analyses for investigating population genetic variation
- A3. Identify the ecological and evolutionary factors that influence the genetic structure of populations
- A4. Explain the conditions under which cells can be cultured outside the body

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Analyze practical and theoretical principles of cell culture.
- B2. Perform statistical analysis of population genetic data under limited supervision.
- B3. Solve simple genetic problems encountered in plant breeding program, animal husbandry, molecular diagnosis and medical applications.
- B4. Evaluate basic inheritance patterns and estimate the likelihood of inheritance of particular diseases.
- B5. Demonstrate the basis of genetic mapping.
- B6. Illustrate the relation between genetic and physical maps.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Plan experiments using cultured cells
- C2. Carry out cell culture, and associated laboratory techniques
- C3. Carry out the most common analysis techniques associated with cell culture

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Present and analyze literature which covers cell culture
- D2. Use language relevant to cell culture, orally and in writing.
- D3. Work either alone or with others to achieve an objective

3. Contents (Theoritical/Practical):

Week	Торіс
1	Cell Structure.

	2	Cell function and bioenergy.													
	3	Functi	onal and stro	utral chloropla	ast.										
	4	Functi	onal and stro	utral mitocho	ndria.										
	5	Functi	onal and stro	utral nucleus.											
	6	Choro	mosomal stri	ucture and fun	iction.										
	7	Behavior of chromosome in mitosis.													
	8	Behavior of chromosome in meiosis.													
	9	DNA organization and gene structure.													
	10	DNA organization and gene structure.													
	11	Karyotyping.													
	12	Idograme.													
	13	Identification according to karyotyping and idograme.													
	14	Role of chromosome in diagnosis to some genetic diseases													
	4. Teaching and learning methods														
			a. Lectu	ires			\boxtimes								
			b.Pract	ical training /	laboratory		\boxtimes								
			c. Semi	nar / Worksho	p										
			d.Class	Activity			-								
			t assessment	7											
	Written	final ex	am	to assess	KU, I										
	Practica			to assess	Р										
	Semeste	r work		to assess	-	-									
	Assessm	ent sch	edule	•											
Ass	sessment	1	Practical ex	am		Week	15								
Ass	sessment :	2	Final exam			Week	16								
	Weighir	g of ass	sessments			1									
		1	Final-term Ex	amination			60	%							

Total

40	%
100	%

6. List of references

Course notes

- Course notes and Laboratory manual authorized by the Council of Department of Botany.

Essential books (text books)

- Plant Tissue Culture Concepts and Laboratory Exercises, Second Edition (Plastic Comb), by Robert N. Trigiano (Editor), Dennis J. Gray (Editor). Amazon.com Sales Rank

Recommended books

- Plants from Test Tubes: An Introduction to Micropropagation, by Lydiane Kyte http://www.amazon.com/Plants-Test-Tubes-Introduction-

Micropropagation/dp/0881923613/ref=pd bxgy b text b - #

(Author), John Kleyn (Author). Amazon.com Sales Rank)

- Falconer, D.S. and Mackay, T.F.C. 1996. Introduction to Quantitative Genetics. Longman Group Ltd. Essex, England. pp. 464.
- Hartl, Daniel L. 1988. A Primer of Population Genetics. Second Ed. Sinauer Associates, Inc. Sunderland Massachusetts. pp. 305.

Web sites

- http://www.egymedicine-net/forumsx/showthoead.php/-126550
- http://www.research.umbc.edu/`jwolf/method5.htm

7. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computer Presentations and Writing Boards
- Microscopes; Compound microscope.
- Microscopic Anatomical Preparations.
- Live plant Morphological Samples
- Library

Course coordinator:

Prof. Prof. Adel Ramadan El-Shanshoury

Head of Department:

Prof. Alaa Abou-Zeid

Date:	08/2014

Course Contents – Course ILOs Matrix

	Course code: 1551		Course title: Cytogenetics														
Wee ks	Course content/		(now dund n	ersta			Inte	llect	ual s	kills		Practical skills			Transferabl e skills		
	Theoritical- Practical	A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	B 5	B 6	C 1	C 2	C 3	D 1	D 2	D 3
1	Cell Structure.	٧	٧						٧		٧				٧	٧	٧
2	Cell function and bioenergy	٧	٧						٧	٧					٧	٧	٧
3	Functional and strcutral chloroplast.	٧	٧						٧	٧					٧	٧	٧
4	Functional and strcutral mitochondr ia.	٧	٧		٧		٧		٧	٧	٧				٧	٧	٧
5	Functional and strcutral nucleus.	٧	٧	٧	٧	٧	٧		٧	٧	٧				٧		٧
6	Choromoso mal structure and function.	٧		٧	٧		٧			٧	٧				٧		٧
7	Behavior of chromosom e in mitosis.	٧					٧	٧	٧		٧						٧

8	Behavior of chromosom e in meiosis	٧	٧	٧		٧	٧	٧	٧	٧						٧
9	DNA organizatio n and gene structure.		٧	٧			٧	٧	٧		٧			٧	٧	٧
10	DNA organizatio n and gene structure2	٧	٧		٧			٧	٧	٧	٧		٧	٧	٧	٧
11	Karyotyping	٧	٧				٧		٧		٧		٧	٧	٧	٧
12	Idograme.	٧	٧				٧	٧	٧		٧		٧		٧	٧
13	Identificatio n according to karyotyping and idograme.	٧	٧				٧	٧	٧	٧	٧			٧	٧	٧
14	Role of chromosom e in diagnosis to some genetic diseases.	٧		٧	٧			٧		٧		٧	٧		٧	٧

Learning and Teaching Methods

							Co	urs	e ou	tcor	nes II	.Os				
LearingMethod		In		lect	tual	l	P	fession and raction Skills	al	General and Transferable Skills						
	A1	A2	А3	Α4	В1	B2	В3	В4	B5	В6	C1	C2	C3	D1	D2	D3
Lecture	٧	٧	٧	٧		٧		٧	٧	٧	٧		٧	٧	٧	
Discussion (Brain Storming)	٧	٧	٧		٧	٧		٧	٧		٧	٧	٧	٧	٧	٧
Self-learing (Essay)	٧	٧	٧	٧	٧		٧	٧		٧	٧	٧	٧		٧	٧
Field Trips										٧				٧		
Practical	٧	٧			٧	٧	٧	٧	٧		٧	٧	٧	٧	٧	٧

Assessment Methods

						(Cou	rse	ou	tco	mes l	LOs				
AssessmentMetho ds	Knowledge and Understandin g					nto	ello Ski			I	Pr	fessi Land action	l al	General and Transferabl e Skills		
	A1	A2	А3	Α4	В 1	B 2	B 3	В 4	В 5	В 6	C1	C2	С3	D1	D2	D3
Essay Question	٧	٧	٧	٧		٧								٧	٧	
мсо	٧	٧	٧		٧	٧		٧	٧		٧	٧	٧	٧	٧	٧
Student Activity			٧	٧	٧		٧	٧		٧	٧	٧	٧		٧	٧
Practical			٧	٧	٧	٧	٧	٧	٧		٧	٧	٧	٧	٧	٧

Course Coordinator

Head of Botany Department

Prof. AlaaAbou-Zeid

M. Sc. Course specifications of Genetics

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014/2015, first term
Date of specification approval	08/2014

A- Basic Information

Title: Genetic Engineering	Code: 1552
Tutorial:	Practical:
Total:	
Coordinator	Prof. saffa Radwan
	Dr. Mohamed Elhiti
Other Staff	
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	1 st semester: 14 x 1h lectures
	2 nd semester: 14 x 1h lectures

B- Professional Information

10. course aims:

This course gives an opportunity to extend fundamental concepts and principles of biological and botanical knowledge particularly in recent topics of plant. Current include the following topics: Reviewing basic molecular genetics, Principles and applications of gene technology, Genetically Engineered products, Molecular markers and their applications and Bio-informatics.

11. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A.1- Describe the basic concepts of molecular biology and molecular genetics.
- A.2- Explain concept and mechanism of molecular markers.
- A.3 Define the applications of gene technologies.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Apply adequate background in Plant genetic Engineering.
- B2. Acquire the knowledge of transferring desirable foreign DNA to improve plant traits.
- B3. Analyze gene regulation in higher plants.
- B4. Solve problems and exercises concerned with the faithful transfer of genetic information

c- Professional and practical skills

There is no Practical skills

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Use of the Internet sites to access information and prepare a research proposal.
- D2. Use of statistical packages related to the topics of the course.
- D3. Demonstrate written and verbal communication skills.
- D4. Use of databases and library search methods.

3. Contents

Week	Торіс
1	Revision of basic molecular genetics
2	Reviewing gene cloning procedures
3	Discussions on the topics of the course and distribution of assignments
4	Methods of gene transfer to plants
5	Methods of gene transfer to microorganisms
6	Methods of gene transfer to animals
7	Application of gene technology in basic research
8	Application of gene technology in pharmaceutical industry and health care
9	Midterm Exam
10	Application of gene technology in plant breeding

11	Molec	ular markers	s in genetic en	gineering			
12	Bioinfo	ormatics in g	genetic engine	ering			
13	Genet	ic engineerir	ng and biodive	ersity			
14	Genet	ic Engineerir	ng and bio-saf	ety			
15	Integra	ated probler	ns and visits to	o biotechnol	ogy cent	res	
16	Round	up discussion	ons on the top	oics of the co	urse		
17	Preser	ntations of a	ssignments				
18	Final e	examination					
15.	Teachir	ng and learr	ning methods				
		a.Lect	ures			\boxtimes	
		b.Prac	tical training /	laboratory			
		c. Sem	inar / Worksho	ор			
		d.Clas	s Activity			-	
16.	Student	t assessmen	t methods				
Writte	n final exa	am	to assess	KU, I			
Practic	al		to assess	-			
Semest	er work		to assess	-			
Assess	ment sch	edule	J	L			
essment	: 1	Practical ex	am		Week		
sessment	2	Final exam			Week	16	
Weighi	ing of ass	essments			_		
	F	Final-term Ex	kamination			100	%
	ſ	Practical Exa	mination				%
	٦	Гotal				100	%
						<u> </u>	
17	List of	references					

Essential books (text books)

- Henry, R.J.Ed. (2001). Plant Gennotyping: The DNA Fingerprinting of Plants. CABI Publishing

- Russel, P.J. (1998). Genetics, 5th ed. The Benjamin/Cummings Publishing Company Inc, an

imprint of Addison Wesley Longman Inc., California, USA.

- Griffiths, A, Miller, J.F., Jeffery, H., Suzuki, D.T., Lewontin, R.C. and Gelbart, W.M. (2000). An

Introduction to Genetic Analysis, 7th ed. WH Freeman, NY, USA.

Recommended books

- Kempken and Kempken (2006) Gentechnik bei Pflanzen, Springer Verlag

Web sites

http://www.emc.maricopa.edu/faculty/farabee/biobk/BioBookDNAMOLGEN.html

http://www.learn4good.com/bookstore/genetics_books_cds_for_academic_students.htm Sites of publishers of science books and periodicals, e.g.. Springer Verlag, Academic press, Oxford John Wiley and sons. .etc....

18. Facilities required for teaching and learning

- Generic resources, such as the library.

- Electronic copies of past exam papers and example assessments.

- Computer Aided, such as E-mail, online conference, data show.

- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Prof. Saffa radwan

Head of Department:

Prof. Alaa Abou-Zeid

Date: 08/2014

Course Contents - Course ILOs Matrix

Course Contents	Week s						1									
			Knov unde					Inte	ellec	tual			Tra	nferr	able	
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	D 1	D 2	D 3	D 4	D 5
Revision of basic molecular genetics	1	√							✓	✓		✓	✓	✓	✓	
Reviewing gene cloning procedures	2	√							✓	✓					✓	
Discussions on the topics of the course and distribution of assignments	3	√	√	√			√	√	√	√					√	
Methods of gene transfer to plants	4	√	√	√			√	√	√	√		√	√	√	√	
Methods of gene transfer to microorganis ms	5	√	√	√			√	√	√						√	
Methods of gene transfer to animals	6	√					√	√	✓						✓	
Application of gene technology in basic research	7	√					√								√	
Application	8	√	✓	√			√			√		√	✓	√	√	

	1		ı	ı	ı			ı			ı	1		
of gene technology in pharmaceuti cal industry and health care														
Midterm Exam	9	√	√	√		√	✓	√	√	✓	√	✓	✓	
Application of gene technology in plant breeding	10	√											√	
Molecular markers in genetic engineering	11	√											✓	
Bioinformatic s in genetic engineering	12	√	√	√		√	✓	√	✓				✓	
Genetic engineering and biodiversity	13	√	√	√		√	√	√	✓				√	
Genetic Engineering and bio- safety	14	√	√	√		√	✓	√	✓	✓	√	✓	✓	
Integrated problems and visits to biotechnolog y centres	15	√	✓							✓	√	✓	✓	
Round up discussions on the topics of the course	16	√	√							√			√	
Presentation s of	17	✓	✓							✓			✓	

assignments											
Final examination	18	√	✓					✓		✓	
Assessment											

Learning and Teaching Methods

Learing Method						С	ours	e out	com	es IL	Os						
	K	Knowledge and Understanding					Intellectual Skills					General and					
	ι											Transferable Skills					
	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	D1	D2	D3	D4	D5		
Lecture	٧	٧	٧	٧	٧		٧		٧								

Assessment Methods

								C	Cour	se o	outo	om	es II	LOs						
Assessment Methods		Knowledge and Understanding				Intellectual Skills				Professional and Practical Skills				General and Transferable Skills						
	A1	A2	А3	A4	A5	В1	B2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧	٧	٧		٧		٧											

Course coordinator: Prof. Saffa Radwan

Head of Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Genetics

Department offering the programme

Department offering the course

Academic year / Level

Date of specification approval

Botany

2014/2015, first term

08/2014

A- Basic Information

Title: Population genetics and Cell and Tissue Culture	Code: 1554
Tutorial:	Practical: 2
Total:	
Coordinator	Prof. Adel Ramadan El-Shanshoury
Other Staff	Prof. Dr. Mahmoud Abou Elyazeed Abdelhaak
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	1 st semester: 14 x 2h lectures
	Practical: 14 x 2h lectures (first semester
	2 nd semester: 14 x 2h lectures
	Practical: 14 x 2h lectures (second semester)

B- Professional Information

12. course aims:

Teach students basic principles and concepts of cell and tissue culture techniques. Provide students with the ability to adapt basic cell and culture procedure to specific research requirements. Teach students the basic principles and concepts of population genetics and related topics, Develop solutions to simple, problems through the application of population genetic theory and principles. Apply the basic principles of population genetics to the analysis of natural and managed systems.

13. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Recognize the advantages and limitations of cell culture in the production of plants adapted to environmental stress.
- A2. Describe the range of molecular laboratory techniques and standard statistical analyses for investigating population genetic variation
- A3. Identify the ecological and evolutionary factors that influence the genetic structure of populations
- A4. Explain the conditions under which cells can be cultured outside the body

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B7. Analyze practical and theoretical principles of cell culture.
- B8. Perform statistical analysis of population genetic data under limited supervision.
- B9. Solve simple genetic problems encountered in plant breeding program, animal husbandry, molecular diagnosis and medical applications.
- B10. Evaluate basic inheritance patterns and estimate the likelihood of inheritance of particular diseases.
- B11. Demonstrate the basis of genetic mapping.
- B12. Illustrate the relation between genetic and physical maps.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Plan experiments using cultured cells
- C2. Carry out cell culture, and associated laboratory techniques
- C3. Carry out the most common analysis techniques associated with cell culture

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D4. Present and analyze literature which covers cell culture
- D5. Use language relevant to cell culture, orally and in writing.
- D6. Work either alone or with others to achieve an objective

3. Contents

Week	Торіс	

	1	Metho	ods of cell and	l tissue culture										
	2	Tissue	culture nutri	ent media.										
	3	Labora	atory organiza	ation for tissue	cultures.									
	4	Cultur	e of haploid c	ell.										
	5	Isolati	on and fusion	of protoplast.										
	6	Propag	gation of plan	ts from tissue	cultures.									
	7	Propag	Propagation of plants from fused protoplast.											
	8	Cytolo	gy of cultured	d cells.										
	9	Genet	ic variability t	hrough <i>in vitro</i>	tissue and	cell cultur	e.							
	10	Genet	ic variability t	hrough <i>in vitro</i>	tissue and	cell cultur	re.							
	11	Use of	tissue culture	es in gene tran	sfer.									
	12	Use of	tissue culture	es in gene tran	sfer.									
	13		Use of tissue cultures approach for the production of plants adapted to environmental stress.											
	14		of tissue cul nmental stres	tures approad	ch for the	product	ion of	plants	adapted	to				
	8.	Teachi	ng and learni	ng methods										
			a.Lectu	res			\boxtimes							
			b.Practi	cal training / la	aboratory		\boxtimes							
			c. Semir	nar / Workshop	1									
			d.Class	Activity			-							
	9.	Studen	t assessment	methods										
	Written	final ex	am	to assess	KU, I									
	Practica	I		to assess	Р									
	Semeste	er work		to assess	-									
	Assessm	nent sch	edule											
Ass	essment	1	Practical exa	ım		Week	15							
Ass	essment	2	Final exam			Week	16							

Weighing of assessments

Final-term Examination	60	%
Practical Examination	40	%
Total	100	%

10. List of references

Course notes

- Course notes and Laboratory manual authorized by the Council of Department of Botany.

Essential books (text books)

- Plant Tissue Culture Concepts and Laboratory Exercises, Second Edition (Plastic Comb), by Robert N. Trigiano (Editor), Dennis J. Gray (Editor). Amazon.com Sales Rank

Recommended books

- Plants from Test Tubes: An Introduction to Micropropagation, by Lydiane Kyte http://www.amazon.com/Plants-Test-Tubes-Introduction-

Micropropagation/dp/0881923613/ref=pd_bxgy_b_text_b - #

(Author), John Kleyn (Author). Amazon.com Sales Rank)

- Falconer, D.S. and Mackay, T.F.C. 1996. Introduction to Quantitative Genetics. Longman Group Ltd. Essex, England. pp. 464.
- Hartl, Daniel L. 1988. A Primer of Population Genetics. Second Ed. Sinauer Associates, Inc. Sunderland Massachusetts. pp. 305.

Web sites

- http://www.egymedicine-net/forumsx/showthoead.php/-126550
- http://www.research.umbc.edu/`jwolf/method5.htm

11. Facilities required for teaching and learning

- Projectors: Video and Overhead.
- Computer Presentations and Writing Boards
- Microscopes; Compound microscope.
- Microscopic Anatomical Preparations.
- Live plant Morphological Samples
- Library

Course coordinator:

Prof. Prof. Adel Ramadan El-Shanshoury

Head of Department:

Prof. Alaa Abou-Zeid			

Date: 08/2014

Course Contents – Course ILOs Matrix

Course code: 1554, course title: : Population genetics and Cell and Tissue Culture

Course Content	We eks					a	na	113	<u>su</u>	<u> </u>	uit	uie	<u> </u>								
s	EK2			ledg rsta				Inte	llec	tual			Pr	acti	cal		-	Tran	ferr	able	:
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5
Method s of cell and tissue culture.	1	√									√	√	√	√			√	√	√		
Tissue culture nutrient media.	2	√									√	√	√	✓			√	√	✓		
Laborat ory organiz ation for tissue cultures	3	√	✓	√	✓		√	✓	✓	✓											
Culture of haploid cell.	4				√					√	√	√	✓	√							
Isolatio n and fusion of protopl ast.	5	√	√	√	√		√	✓			√										
Propaga tion of plants from tissue cultures	6			√	✓		√	✓	✓	✓	✓										

	1									1							
Propaga tion of plants from fused protopl ast.	7			•	•			•	•					•	✓	✓	
Cytolog y of culture d cells.	8	✓	✓	✓	<			√	✓					✓			
Genetic variabili ty through in vitro tissue and cell culture.	9		>	\					\					>	→	✓	
Genetic variabili ty through in vitro tissue and cell culture.	10		>	>	\	\	>	✓	>							✓	
Use of tissue cultures in gene transfer .	11	→	>	→	>	>		√	>	→	✓	✓		>	>	√	
Use of tissue cultures in gene transfer .	12			\	>	>	>				>	>				>	
Use of tissue cultures approac h for the product ion of	13	✓	→	>	>	>				✓	✓	✓		→	>	√	

plants adapted to environ mental stress.																
Use of tissue cultures approach for the product ion of plants adapted to environ mental stress.	14	√	√	✓	✓	✓			✓	✓	✓		✓	✓	√	
Assess ment																

Learning and Teaching Methods

								C	Cour	se c	outc	om	es IL	.Os						
Learing		Kno	wl	edg	e		1+0	1100	tua		Pı	rof	essi	ion	al		Ger	nera	lan	d
_			an	d		"		kill		71	ar	nd F	ra	ctic	al		Tra	nsfe	ra b	le
Method	Uı	nde	rst	and	ing		3	KIII	15			S	kill	s				Skil	ls	
	A1	A2	А3	Α4	A5	B1	B2	В3	В4	В5	C1	C2	C3	C4	C 5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧		٧	٧												
Practical											٧	٧	٧	٧	7					

Assessment Methods

								C	Cour	se o	outo	om	es II	LOs						
Assessment Methods			an	edg d and		Ir	nte S	lled kill		al		rof nd I S		ctio			Trai	iera isfe Skill	rab	
	Α1	A2	А3	Α4	A5	B1	В2	В3	В4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧	٧	٧	٧		>	٧											
Practical												٧	>		>					

Course coordinator: Prof. Prof. Adel El-Shanshoury

Head of -- Department: Prof. Alaa Abou-Zeid

Tanta University, Faculty of Science

M. Sc. Course specifications of Genetics

Department offering the programme

Department offering the course

Academic year / Level

Date of specification approval

Botany

2014-2015

08/2014

A- Basic Information

Title: Statistics and experimental Taxonomy	Code: 1551
Tutorial:	Practical: 2
Total:	
Coordinator	Prof. Kamal Shaltout
Other Staff	Prof. Dr. Mhamoud Abu-Elyazied
	Prof. Dr. Adel El-Shanshoury
	Prof. Dr. Reda Gaafar
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	1 st semester: 14 x 2h lectures
	Practical: 14 x 4h lectures (first semester
	2 nd semester: 14 x 2h lectures
	Practical: 14 x 4h lectures (second semester)

B- Professional Information

14. course aims:

The first module gives students an opportunity to: Achieve a comprehensible form of the too much data that characterize the modern biological research. Apply statistical tests for evaluating differences, variations and associations between populations and their significance in probability terms. Teach the students the modern software programs for statistical analysis and to interpret and make inferences from analysis of set of observations sampled from a population. Find out the best possible experimental design that provides the best sorting out of the controlled and uncontrolled variations.

The second module gives students an opportunity to: Teach students the relationships between plants and biotic and a biotic factors, the basis of plant diversity and plant conservation, Provide students with skills which enable them to diagnose the characteristics of plants from all types of evidence and Explain the evolutionary mechanisms, relationships between plant species, and phylogenetic trends in diverse taxa.

2. Intended learning outcomes of course (ILOs)

A-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

Module 1:

- A1. Identify the role of the biostatistics in the procedure of the biological scientific research.
- A2. Recognize the association between variables in normal and non-normal distributed populations (correlations and regressions).
- A3. Compare between each pair of treatments in multi-treatment experiments
- A4. Explain the tests of significance of difference between two or more than two sampled populations.
- A5. Discuss the application, advantages and disadvantages of the different types of experimental designs.

Module 2:

- A1.Recognize individual change over time and relation of this change to diversity A2.define the importance of the environment in the survival and distribution of plants
- A3.Identify the importance of the natural reserves and their role in conserving diversity.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

Module 1:

- B6. Differentiate between the characteristics of the different types of distributions
- B7. Demonstrate the principles and approaches underlying current methods of biostatistics and its application using computer software programs
- B8. Apply the best suitable statistical tests for the different biological experiments
- B9. Design suitable experimental
- B10. Analyze the results statistically

Module 2:

- B1. Discuss the principles, underlying plant taxonomy, diversity, conservation.
- B2. Analyze the importance of wild life for sustainable development.
- B3. Critically evaluate the primary literature in particular areas of plant ecology and taxonomy.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

Module 1:

- C1. Perform the best suitable statistical tests for the different biological experiments
- C2. Provide the statistical consultation for the students and researchers of biology.
- C3. Prepare the suitable experimental design and how to analyze the results statistically

Module 2:

- C1. Solve biological problems by a variety of methods including computer and other recent tools
- C2. Demonstrate skills and knowledge required to perform laboratory experiments safely with appropriate equipment.
- C3. Select a representative sample considering its validity, accuracy and reliability during plant collection.
- C4. Apply field and laboratory investigations to establish expertise in plant species identification in a range of contrasting Egyptian habitats.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

Module 1

- D5. Use databases and library search methods as well as internet sites
- D6. Independent learning ability required for continuing professional development

- D7. Work with others, use and manage ideas and information.
- D8. Demonstrate written and verbal communication skills on modern approaches **Module 2:**
- $\label{eq:D1.D1} D1. \quad \text{Independent learning ability required for continuing professional development.}$
- D2. Able to prepare complete and clean scientific report
- D3. Ability to work with others, use and manage ideas and information
- D4. Drawing and labeling curves, habits, sections etc.

3. Contents

	Statistics
Week	Topic
1	Introduction
2	Biostatistics as a tool of scientific research
3	Sampling of attributes
4	Frequency and probability distributions
5	Normal distribution
6	Binomial distribution
7	Poisson distribution
8	Tests of significance
9	Round-up discussion on the previous topics
10	Partial examination
11	Introductory note on analysis of variance
12	Data transformations
13	One-way analysis of variance
14	Some basic experimental designs (completely random, randomized
	complete block and Latin square designs)
15	Two-way analysis of variance
16	Split-plot experimental design
17	Least significant difference (LSD) and least significant range (LSR) tests
18	Round-up discussion on the previous topics
19	Partial examination
20	Simple linear regression
21	Simple linear correlation
22	Rank correlation
23	Curve fitting and method of least squares
24	Multiple correlation
25	Multiple regression
26	Analysis of time series
27	Round-up discussion on the previous topics
28	Round-up discussion on the all topics of the course (part one)
29	Round-up discussion on the all topics of the course (part two)
30	Final examination
	Experimental Taxonomy
Week	Topic
1	General principles

2	Biotic factors (positive and negative interactions)
3	Genetic factors (morphological characters and variation in phenotype
	alteration)
4	The use of chromosome information in plant taxonomy
5	Chromosome behavior in relation to plant taxonomy
6	Chromosome banding pattern variation
7	Pollen grain structure variation and taxonomy
8	The use of some chemical compounds distribution in plant taxonomy
9	The importance of DNA hybridization in plant taxonomy
10	The use of DNA contents in plant taxonomy
11	Importance of amino acid sequences in taxonomy
12	Characteristics of wildlife conservation (e.g. biodiversiy,)
13	Species specification resulted from chromosome alteration
14	Brief description of the Egyptian species evolution

4.	Teaching	and	learning	methods

a. Lectures

b.Practical training / laboratory

c. Seminar / Workshop

d.Class Activity

5. Student assessment methods

Written final exam	to assess	KU, I
Practical	to assess	Р
Semester work	to assess	

Assessment schedule

Assessment 2 Final exam Week 15

Week 16

Weighing of assessments

Final-term Examination
Practical Examination
Total

60 % 40 % 100 %

6. List of references

Course notes

Essential books (text books)

- Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA.
- Snedecor, G. W. & Cochran, W. G. 1967. *Satistical Methods*. The Iowa State University Press, Iowa, USA.
- Plant Systematics by Michael Simpso.
- Plant Systematics (Paperback) by Gurcharan Singh.
- Plant Systematics (Hardcover) by Samuel B. Jones (Author), Arlene E. O Luchsinger (Editor Heywood, V. H. Flowering Plants of the World.

Recommended books

- Voelkl, K. E. & Gerber, S. B. 1999. Using SPSS for Windows: Data Analysis and Graphics. Springer, New York, USA.
- Stephens, L. J. 1998. Beginning Statistics. Schaum's Outline Series, McGraw-Hill. New York, USA.
- Introduction to Plant Systematics. 2ND ED. (ISBN: 0070327963) Jones, Samuel B.; Luchsinger, Arlene E.

Web sites

- http://www.eulc.edu.eg/v2/libraries/
- http://www.google.com
- http://www.botan.su.se/systematik/default.html
- http://www.science.siu.edu/PlantBiology/PLB449/Systematics

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Prof. Kamal Shaltout

Head of Department:

Prof. Alaa Abou-Zeid

Date: 08/2014

Course Contents - Course ILOs Matrix

Course code: 1551, course title: Statistics and Biostatistics

Normal distribution	Course Contents	W																		
Introduction	Contents							Inte	ellec	tual			Pr	acti	cal		Tran	ferr	able	•
Biostatis tics as a tool of scientific research Sampling of attribute s Frequen cy and probability distribut ion Normal distribution Binomial 6 distribution Poisson distribution Tests of significa																				D 5
Sampling of attribute s Frequen cy and probabili ty distribut ion Binomial distribut ion Poisson distribut ion Tests of significa		1	√	✓	✓	✓								✓					√	
of attribute s Frequen cy and probabili ty distribut ions Normal distribut ion Binomial distribut ion Poisson distribut ion Tests of 8 significa	tics as a tool of scientific	2	✓	✓	✓	✓	✓					✓		✓		✓	✓	✓	✓	
cy and probabili ty distribut ions Normal distribut ion Binomial distribut ion Poisson 7	of attribute	3	✓	✓												✓			✓	
distribut ion Binomial 6 distribut ion Poisson 7 V V V V V V V V V V V V V V V V V V	cy and probabili ty distribut	4	√	✓												✓	✓	✓	√	
distribut ion Poisson of the first of significa of the first of the f	distribut	5	√	✓												√			√	
distribut ion Tests of 8 V V V V V V V V V V V V V V V V V V	distribut	6				√	√	√	√	√	√			√						
significa	distribut	7	√		√	✓	√	√												
···		8	√			✓			✓		✓			√		√	✓	✓	√	

discussio n on the previous topics																		
Partial examinat ion	0	✓	✓	✓	✓	✓	✓	√	✓			√			✓	✓	✓	
Introduc tory note on analysis of variance	1 1	✓			✓	✓	✓	✓				✓						
Data transfor mations	1 2	√			✓	√	√	√	✓	√	√	✓		√				
One-way analysis of variance	1 3	✓			√	✓	✓					√		√	>	>	>	
Some basic experim ental designs (complet ely random, randomi zed complet	1 4	√	√	√	√												√	

e block																		
and Latin square designs)																		
Two-way	1	✓			√	√	√				√	√		√	√	√	✓	
analysis of variance	5																	
Split- plot experim ental design	1 6	>			>	>	>				→	→					→	
Least significa nt differenc e (LSD) and least significa nt range (LSR) tests	1 7	>			>						>	√		>	>	√	>	
Round- up discussio n on the previous topics	1 8	>			→	>	>	→	>	>	>	✓					>	
Partial examinat ion	1 9	✓			✓			✓				✓					✓	
Simple linear regressio n	2	→			→			→				✓					→	
Simple linear correlati	2	√					√	√				✓					✓	

on																		
Rank correlati on	2 2					✓	✓	✓				√					✓	
Curve fitting and method of least squares	2 3		✓						>	>	→	✓					>	
Multiple correlati on	2	✓	√	√	✓	✓	√	✓				√		\				
Multiple regressio n	5	√					✓	✓				✓		√				
Analysis of time series	6	√	√	√	√	✓	\	\				✓		✓	✓	✓	✓	
Round- up discussio n on the previous topics	7	✓		√	✓	✓						✓		✓	✓	✓	✓	
Round- up discussio n on the all topics of the course (part one)	2 8	✓		✓			\	\				✓						
Round- up discussio n on the all topics	9	√		✓			✓				√	✓						

of the course (part two) Final examinat ion	3 0	✓		✓	✓					✓	✓	✓					✓	
Section III																		
General principle s	1	√	✓	√		✓	√	✓					√	√	√	√	✓	
Biotic factors (positive and negative interacti ons)	2	✓	✓	>		✓	✓	>					>	>	>	>	>	
Genetic factors (morpho logical characte rs and variation in phenoty pe alteratio n)	3	✓	✓	✓		✓	✓	✓		✓	✓	✓	√	√	√	✓	✓	
The use of chromos ome informat ion in plant taxonom y	4	✓	~	>		✓	✓	>		>	>	>	>	>	>	>	>	

							1										
Chromos ome behavior in relation to plant taxonom y	5	•				•					>	>	~	>	~	>	
Chromos ome banding pattern variation	6	✓				✓	✓		>	>						>	
Pollen grain structur e variation and taxonom y	7	✓				✓	✓		>	>						>	
The use of some chemical compou nds distribut ion in plant taxonom	8	✓	✓	√		√	√		√		✓	✓	√	√	✓	→	
The importan ce of DNA hybridiza tion in plant taxonom y	9	•	•	•		>	>		>		√					>	
The use	1	✓		✓		✓	✓		√		✓					√	

of DNA contents in plant taxonom	0																
Importa nce of amino acid sequenc es in taxonom	1 1	✓	✓						>		→	>	✓	✓	✓	✓	
Characte ristics of wildlife conserva tion (e.g. biodivers iy,)	1 2	✓	√						✓	✓							
Species specifica tion resulted from chromos ome alteratio n	1 3	✓	√						\	>	>	\	✓	✓	✓	*	
Brief descripti on of the Egyptian species evolutio n	1 4	✓	√		>	>	>		>	>						>	
Assessm ent												√					

Learning and Teaching Methods

								Co	urse	ou	tcor	nes	ILO	S						
Learing Method			an	edg d and		lı		lled kill	tua s	al		rof nd f S		ctic			Tra	nera nsfe Skil	ra b	
	A1	A2	А3	Α4	A5	В1	B2	В3	В4	В5	C1	C2	С3	C4	C5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧	٧	٧													
Discussion																				
(Brain																				
Storming)																				
Self-learing																				
(Essay)																				
Field Trips																				
Practical											٧	٧	٧	٧	٧					

Assessment Methods

								Со	urse	e ou	tco	mes	ILC)s						
Assessment Methods			an		e ing	Ir		llec kill	tua s	ı		rof nd I S		ctio			Trai	nera nsfe Skil	rab	-
	A1	A2	А3	Α4	A5	B1	B2	В3	B4	B5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay Question	٧	٧	٧	٧	>			٧		٧										
MCQ																				
Student Activity																				
Practical											٧	٧			٧					
Assessment Methods																				

Course coordinator: Prof. Kamal Shaltout

Head of -- Department: Prof. Alaa Abou-Zeid

M. Sc. Course specifications of Genetics

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014/2015, Two terms
Date of specification approval	08/2014

A- Basic Information

Title: Computer	Code: 1557
Tutorial:	Practical: 1
Total:	
Coordinator	Prof. Mohamed El-Awady
Other Staff	Prof. Mahmoud Kamel, Prof. Ahmed El-Shishtawy, Prof. Qadry Zakaria
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	Lectures: 28 x 1h lectures
	Practical: 28 x 1h lectures

B- Professional Information

3. course aims:

Develop students' capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies. Develop Underpin academic work throughout postgraduate studies.

Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

A6. Recognize the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.

Arrange powerful presentation using sophisticated software packages.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1.Integrate different application programs to develop effective information analysis and presentation.
- C2. Solve scientific problems using computer programming.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- a. Use a number of computer packages to present information.
- b. Perform necessary graphical, statistical and frequency analyses of different types of data.
- c. Use of different internet resources.
- d. Use of different photo enhancing and manipulation techniques.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

D8.Internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential-logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video, etc and different attractive animations

	Design a skills	real and pow	erful presentatio	n with different acquired
Lecture 8-9	Use of ir	nternet capabi	lities and searchi	ng engines
	Assignm	ent 4: Using t	he Internet	
	Life sear	ch on the inte	ernet for some rea	al information
Lecture 10-11	Creating	Data Base an	d related Queries	and Reports
	Assignm	ent 5: Using A	Application progr	ams
	_	a real Data B ct useful infor		ferent queries and reports
Lecture 12-13	Compute	er programmii	ng language	
	Assignm	ent 6: Progra	nming using Visu	al Basic 6
	Solving r	eal problems	using a computer	language
Lecture 14-15	Photo m	anipulation a	nd enhancement	using the photoshop
	Assignm	ent 7: Using t	he Photoshop pr	ogram
	Practicin	g on manipul	ation and enhanc	ing of images
Lectures 16			requency analysis ation searching fo	s using Fourier analysis or periodicities
4. Teaching	and learn	ing methods		
	e. Lectu	ires		
	f. Pract	ical training / la	boratory	
	g.Semi	nar / Workshop		
	h.Class	Activity		-
5. Student as	ssessment	methods		
Written final exam		to assess	KU, I	
Practical		to assess	Р	

Assignment 3: Using PowerPoint program

	Semester work		to assess	-			
<u> </u>	Assessment sch	edule	J				
Ass	essment 1	Practical exa	am		Week	15	
Ass	essment 2	Final exam			Week	16	
	Weighing of ass	sessments					
	I	Final-term Ex	amination			60	%
	I	Practical Exar	mination			40	%
	:	Semester wo	rk				%
	-	Total				100	%
	6. List of	references			L		
	Course notes						
	Notes given to therefore no p Essential books Recommended	text books)			the task	ks to be (completed,
	Web sites 7. Facilities	es required f	or teaching an	d learning			
		rs; Video an					1
	- LCD scree	ens and writ	ting Boards				
	- Commerc	cial compute	er scientific s	oftware pa	ckages.		
L	Course coordina	ator:					
	Prof. Mohamed	El-Awady					
	Head of Depart	ment:					
	Prof. Alaa Abou	-Zeid					

Date: 08/2014

Tanta University, Faculty of Science

Course Contents - Course ILOs Matrix

Course code: 1557, course title: Computer

Course Contents				ledg rsta				Inte	llec	tual			Pr	actio	cal		•	Гran	ferr	able	;
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5
Methods for graphical represen tations, Data analysis and Data modeling	1	~					✓	✓				~	√	~	√		✓				
Assignm ent 1 : Using Applicati on program s	2	✓					✓	✓				✓	✓	✓	✓		✓				
Calculati on of Slope and intersect ion of lines, Best																					
fitting for data,																					

				1	1	1											
Extractin																	
g Trend,																	
and																	
Equation																	
s for																	
acquired																	
data																	
(linear -																	
exponent																	
-																	
ial-																	
logarith																	
mic																	
etc)																	
Statistica	3	√					✓	✓			✓	✓	✓	✓	✓		
I Data																	
analysis																	
anaiysis																	
Assignm	4	✓					✓	√			√	√	√	√	✓		
ent 2 :																	
Using																	
Applicati																	
on																	
program																	
s																	
Apply																	
some																	
statistica																	
function																	
such as																	
Average,																	
Median,																	
STDEV,																	
and																	
Correlati																	
on on a																	
simulate																	
d data																	
u uuta																	
Creating	5	✓					✓	✓			✓	√	✓	√	✓		
powerful																	
presenta																	
tion																	
including																	
			•	•		i i			1								

charts, images, video, etc and different attractiv e animatio ns													
Assignm ent 3: Using PowerPo int program Design a real and powerful presenta tion with different acquired skills	6	✓		<i>\</i>	V		→	✓	✓	✓	~		
Use of internet capabiliti es and searchin g engines	7	✓		V	✓		\	>	>	>	>		
Assignm ent 4: Using the Internet Life search on the internet	8	✓		~	•		✓	✓	✓	✓	✓		

for some														
real														
informati on														
	-													
Creating Data	9	✓			√	✓		✓	✓	✓	√	✓		
Base and														
related														
Queries and														
Reports														
Assignm	1	√			✓	✓		√	√	√	√	✓		
ent 5: Using	0													
Applicati														
on														
program s														
Creating														
a real														
Data														
Base and apply														
different														
queries														
and reports														
to														
extract useful														
informati														
on														
Compute	1	✓			✓	✓		✓	✓	✓	√	✓		
r program	1													
ming														
language														
Assignm	1	✓			√	✓		√			√	✓		
ent 6: Program	2													
ming														

using Visual Basic 6 Solving real problems using a														
compute r language														
Photo manipula tion and enhance ment using the photosh op	1 3	~			>	>		>	>	>	>	>		
Assignm ent 7: Using the Photosh op program Practicin g on manipula tion and enhancin g of images	1 4	√			~	>		~	✓	~	~	>		
Introduct ion to Data frequenc y analysis using Fourier analysis	1 5	✓			Y	✓		✓	Y	✓	✓	✓		

and											
Fourier											
transfor											
mation											
searchin											
g for											
periodici											
ties											
Assessm											
ent											

Learning and Teaching Methods

								C	our	se c	utc	ome	es IL	.Os						
Learing Method			an	edg d and		Ir		lle d kill	tua s	al		nd F	ess Pra kill	ctic			Tra	nera nsfe Skil	rab	
	A1	A2	А3	Α4	A5	B1	B2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Lecture	٧	٧	٧	٧	٧		٧	٧		٧										
Discussion																				
(Brain																				
Storming)																				
Self-learing																				
(Essay)																				
Field Trips																				
Practical											٧	٧	٧	٧	٧					

ssessment Methods

								С	our	se c	outc	om	es II	LOs						
Assessment Methods		Kno nde	an	d	e ing	Ir	nte S	llec kill		al		nd I		ion ctic Is			Γra	neral nsfe Skill	rab	-
	Α1	A2	А3	Α4	A5	B1	В2	В3	В4	В5	C1	C2	C3	C4	C5	D1	D2	D3	D4	D5
Essay	.,	٠,	v	./	./		.,													
Question	V	٧	V	٧	٧		٧													
Practical											٧		٧		٧					

Course coordinator: Prof. Mohamed El-Awady

Head of -- Department: Prof. Alaa Abou-Zeid

M.Sc. Programme of Phycology

Tanta University, Faculty of Science

M. Sc. program specifications of Phycology

Department offering the program	Botany Department
Academic year	2014-2015
Date of specification approval	8 /2014

A- Basic Information

Program title:	M. Sc. degree in Botany (Phycology)
Program type	Single
Coordinator:	Prof. Atef Abo-Shady
External Evaluator (s):	Prof. Hanan A. Gozlan. Faculty of Science, Alexandria University
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Program References	Bioscience, Egyptian Code of Assessment
Date of Delivery	Every year in September
Review Date	Internal Periodic Review, Summer 2014

B- Professional Information

1-Program aims

It is aimed to provide students comprehensive concepts of plant phycology and in-depth understanding of specialized areas of special topics related to plant phycology and plant biochemistry. Equip students with IT and statistical skills to present, edit and analysis their data. Prepare the students to the doctor program (Ph.D.) in the field of Phycology or to the professional employment.

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should have acquired knowledge and understanding of the underlying concepts and principles of:

- A1. Classify algae and relate each to order and family
- A2. physiology of algae and microorganisms in general

- A3. membrane and pigment structure, in addition to the basic biochemistry of Protein and DNA.
- A4. basic statistical procedures used to analyze data

B. Intellectual skills:

At the end of this module students should have acquired the ability to:

- B1. Think logically and organize tasks into a structured form.
- B2. Assimilate knowledge and ideas based on wide reading and through the internet.
- B3. Understand the evolving state of knowledge in a rapidly developing field.
- B4. comment on technique used in algae classification
- B5. interpret different techniques in extraction of economic products from algae.
- B6. Plan, conduct and write a report on an independent research project
- C. Professional and practical skills

At the end of this module students should have acquired the following skills:

- C1. Conduct basic techniques and methods to the studies and research in algae classification and physiology.
- C2. Be able to prepare written protocols for experimental procedures and collect and interpret data from experimental observations and measurements
- C3. Be able to design and conduct individual and shared research projects both in the laboratory and in the field.
- C4. Be able to use computer software and web sites and other forms of information technology for data collection, analysis and presentations
- D. General and transferable skills:
- D1. Work in a team and be able to cooperate with others
- D2. Demonstrate written and verbal communication skills using IT in work and in life
- D3. Able to accounting and management.
- D4. Ability to manage time and resources
- D5. Present ideas and arguments in a structured manner
- E. Teaching and learning

Knowledge will be developed through

1. Lectures

2. Practical

E. Assessment

A wide variety of assessment methods are used

- 1. Written exam.
- 2. Practical exam.

3. Academic Reference Standards:

The Academic Reference Standards for the award of master in Plant phycology (Algae) As well as the attributes and capabilities of the graduate To Provide students with the main concepts of classification of Algae, teach and train students the principles and main physiological processes in algae and microorganisms in general., understand the basic biochemistry of membrane, pigments, protein and DNA and to know the basic statistical procedures used to analyze data

I. Knowledge and Understanding:

Approaches to study and forms of subject knowledge likely to be common to all bioscience degree programs will include the following:

- knowledge and understanding of the processes and mechanisms of life
- From molecular to cellular.
- From Organism to community.
- engagement with the essential facts, major concepts, principles and theories associated with the chosen discipline.
- understanding of information and data, and their setting within a theoretical framework.
- familiarity with the:
- Terminology.
- Nomenclature.
- Classification systems as appropriate.
- Methods of acquiring, interpreting and analysing biological. information with a critical understanding of the appropriate contexts for their use through the:
- Study of texts.
- Original papers.

- Reports and data sets.
- Developing knowledge about the diversity of life and its evolution.
- Knowledge of a range of practical techniques and methodologies, including:
- Data analysis.
- Use of statistics.
- Engagement with current developments in the biosciences and their applications, and the philosophical and ethical issues involved.
- The applicability of the biosciences to the careers to which graduates will be progressing.

II. Skills

A. Generic skills

- an appreciation of the complexity and diversity of life processes through the study of organisms, their molecular, cellular and physiological processes, their genetics and evolution, and the interrelationships between them and their environment.
- the ability to read and use appropriate literature with a full and critical understanding.
- the capacity to give a clear and accurate account of a subject.
- critical and analytical skills: a recognition that statements. Should be tested and that evidence is subject to assessment and critical evaluation.
- the ability to employ a variety of methods of study in investigating, recording and analyzing material.
- the ability to think independent, set tasks and solve problems.

A. Key skills

The specific key skills that should be developed in bioscience degree courses are subdivided into:-

1. Intellectual skills

- Recognizing and applying subject-specific theories, concepts or principles. For example:
- The relationship between genes and proteins.
- The nature of essential nutrients in microbes, cells, plants and animals;
- Analyzing and summarizing information critically, including published research or reports;

- Obtaining and integrating several lines of subject-specific evidence to formulate and test hypotheses;
- Applying subject knowledge and understanding to address familiar and unfamiliar problems

2. Practical skills

- Designing, planning, conducting and reporting on investigations. The data may be obtained through:
- individual
- group projects
- Obtaining, recording, collecting and analyzing data using appropriate techniques in the field and/or laboratory, working by themselves or in a group
- Undertaking field and/or laboratory investigations of living systems in a responsible, safe and ethical manner. For example, Students must pay due attention to risk assessment, relevant health and safety regulations, and respect for animal & plant life
- In some Bioscience degrees, graduates will learn to respect rights of access, for example:-
- In field work or in order to map the genes of a community, family or group of plants or animals, including humans. They should show sensitivity to the impact of investigations on:
- the environment.
- the organisms under investigation.
- other stakeholders.
- Preparing, processing, interpreting and presenting data, using appropriate qualitative and quantitative techniques:
- Statistical programs.
- Spreadsheets.
- Programs for presenting data visually.
- Solving problems by a variety of methods including the use of computers.
- Using the internet and other electronic sources critically as a means of communication and a source of information.
- 3. Interpersonal and teamwork skills
- Identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles;

- Recognizing and respecting the views and opinions of other team members;
- Negotiating skills;
- Evaluating performance as an individual and a team member; evaluating the performance of others;
- Developing an appreciation of the interdisciplinary nature of science and of the validity of different points of view.
- 4. Self-management and professional development skills
- Developing the skills necessary for self-managed and lifelong learning (e.g. working independent, time management and organization skills);
- Identifying and working towards targets for personal, academic and career development;
- Developing an adaptable, flexible, and effective approach to study and work.

4.a.Program duration: Minimum two years.

4.b.Program Structure:

4. b.1. The First Preliminary Year:

All applicants admitted to the master's program are required to study 6 selected theoretical courses and one practical course approved by the department council from the master courses offered by the department for one academic year. A part of the M.Sc. courses offered by the Botany Department, the student should study a course in English language for a minimum one hour per week. Albeit, students who have taken equivalent English language course may be exampled from it upon the recommendation of the Faculty Council.

No. of hours per week: 12 Lectures and 6 hours practical

The registration for the preliminary year takes place in October, and the final exam. Is held once a year (June) in the date approved by the Faculty Council.

Grade Assessment:

Final Written Exam.60%

Final Practical Exam 40%

*< 60% failed

60-69 passed, 70-79 good, 80-89 very good, >90% excellent

*Failed students can repeat the course (s) only once.

4. b.2. The second year:

If the student passes the final examination, he/she will be a legible for continuation and registration to carry out research and starts thesis preparation. The thesis could be submitted after one year.

5. Program Contents

N	Code	Course Name	Lecturer
1	1531	Phycology	Prof. Dr. Atef Abo-Shady Dr. Gehan Ismail Dr. Sally Gheda
			Dr. Shimaa El-Shafey
2	1532	Biochemistry A	Prof. Dr. Mohamed El-Anowr Prof. Dr. Awatif Mohsen
3	1533	Biochemistry B	Prof. Dr. Mohammed El-Shourbagy Prof. Dr. ElsayedMorsi
4	1534	Physiology of Algae and Microorganisms	Prof. Dr. Atef Abo-Shady, Dr. SamiaShabana
5	1538	Biostatistics	Prof. Dr. Kamal Shaltout Dr. Mohamed Abdelmonsef
6	1573	Computer	Prof. Dr. Mohamed El-Awady.

Course Contents of plant Phycology

Course Name	Code No	Contents
Phycology	1531	The criteria of classification of algae depending on the photosynthetic pigments, food storage, chemical structures of cell wall, evolution of thallus, evolution of sex organs and flagella, fine structure of algal plastids, biochemical taxonomy of algae based on pigments, lipids and carbohydrates.
Biochemistry A	1532	Types and, mechanisms of phosphorylation, Plant pigments: structure, function and biosynthesis, Biological membranes: structure, function and biosynthesis,

		Importance of natural plant products, Definition, importance and biosynthesis of alkaloids, terpenoides and phenolic compounds
Biochemistry B	1533	Growth and differentiation in plants, Plant growth hormones and their metabolism, Mechanism of action of plant growth hormones, Hormonal control in the whole plant, Molecular mechanisms of plants under stress, Perception and transduction of stress by plant cells, Synthesis of phenolic compounds and metabolic lipids in chloroplasts
Physiology of Algae and	1534	Physiology of algae:
Microorganisms		Effect of environmental conditions on the algal growth and metabolicativity, Nitrogen fixation: nitrogenases, reductant and ATP, factors affecting nitrogen fixation, regulation of nitrogen, and The role of algae in economical potential, water pollution.
		Physiology of Microorganisms:
		Spore germination, Heat shock protein in fungi, Growth rhythms, Fungi as decomposers of leaves, Effect of the toxic environment on microbial growth, The role of cyanobacteria in nitrogen fixation
Biostatistics	1538	Part one: Statistical definitions, sampling of attributes, distributions (Normal, Binomial, Poisson), and tests of significance, Part two: Analysis of variance, experimental designs, association between variables, curve fitting and the method of least square, multiple and partial correlation and regressions, and analysis of time series.
Computer	1573	Visual basic, power point, internet and Photoshop program

6.Thesis

Thesis is an essential aspect of M.Sc. program, for partial fulfillment of M.Sc. degree requirements. It is a formal written document representing sustained original research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis must meet precise academic standards and will be reviewed and approved by the candidate's supervising professor and external academic review committee.

The thesis should contain at least the following:

• Title page (title, name of student, university, faculty, name of program, date, supervisors

- Table of contents
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions
- References.

Language of the thesis

The thesis must be written in English language accompanied by a summary in Arabic.

Formation of Examiners Committees

A committee is selected by Botany Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

7-Admission:

An applicant for admission to the master's program should hold Botany B.Sc. degree in science either major with a minimum grade "Good" or double major with a minimum general grade "Good" from any Egyptian or equivalent institute. In addition, all applicants must satisfy the department graduate admission.

8- Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1 Alumni	Questionnaire	
2- Stakeholders (Employers)	Questionnaire	
3- External Evaluator(s)	Report	

Program coordinator:

Prof. Atef Abo-Shady	
Head of Department:	J

Prof. AlaaAbou-Zeid		

Date: 8/2014

M. Sc. programPlant (Phycology) matrix

		M. Sc. program(Phycology) matrix																							
Course Course Title code		Knowledge and Understan ding					Intellectual skills								Professional skills					General skills					
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	B 6	B 7	B 8	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5	D 6
Phycology	1531	1	V	1	1		1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1
Biochemistr y A	1532				1	1	1			1	1			1	1		1		1			1		1	
Biochemistr y B	1533	V			1	1	1			V				1			1	1		1	1		1	1	1
Physiology of Algae and Microorgani sms	1534	1	1	V	√	1	√	√	√	√	√	√	√	1	√			1		√	1	1	1	V	√
Biostatistics	1538				1	1	1	1				1	1	1		V	1					1			
Computer	1573				1	1			V	1		1	1		1			√	1						1
thesis					1	1	1	1	1	1	1	1		1	1	1	1	1	1	V		1	1	1	1

Coordinator: Prof. Atef Abo-Shady

Head of Department: Prof. Alaa Abo-Zeid

M. Sc. Course specifications of Phycology

A- Basic Information

Title: Phycology	Code: 1531
Coordinator	Prof. Atef Abo-Shady
Other Staff	Dr. AbdelfatahAbomohra
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 2h lectures (First term)
	14 x 2h lectures (Second term)

Academic Year: 2014-2015

B- Professional Information

course aims:

Explore the fundamental principles of algal classification depending on the photosynthetic pigments, food storage, chemical structures of cell wall, and evolution of thallus, evolution of sex organs and flagella, fine structure of algal plastids, biochemical taxonomy of algae based on pigments, lipids and carbohydrates. Provide the students with an understanding of the basic principles of algal physiology. Teach the students of phycology section the basic principles of algal culture techniques. b Identify the algal uses and economics

2. Intended learning outcomes of course (ILOs)

A-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A.1- List the general characteristics of algae.
- A.2- Recognize the bases of algal classification.
- A.3. Define the factors affecting the distribution of Algae of Rivers and lakes.
- A.4- Explain the effect of algal toxins on animals and humans.

B- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Formulate the principles, underlying algal metabolism.
- B2. Assess the principles underlying the different nutrients metabolic regulatory circuits.
- B3. Discuss the basis of algal toxins and their effect.

B4. Interpret the effect of nutrients on algae growth and metabolism.

C- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Use different methods for algae laboratory manipulation.
- C2. Use statistics to evaluate the efficiency of different methods used in that field.
- C3. Manage strategy for algae metabolism identification
- C4. Carry out laboratory work

D- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Use of statistical packages for cluster analysis
- D2. Prepare a research proposal
- D3. Prosecute a research by applications of laboratory or field techniques
- D4. Communicate the principles of algal physiology in a manner appropriate to their programme of study.

3. Contents

A. Theoritical

	First Semester									
Week	Week Topic									
1	What are algae?									
2	Bases of algae classification									
3	Factors affecting algae distribution									
4	Algae and the food they make									
5	Algae of streams and rivers									
6	How algae grow and reproduce									
7	Reproduction units in algae									
8	Algae of Lakes and ponds									
9	Effect of light on the distribution of algae in Lakes and ponds									
10	Effect of nutrients on algae distribution									
11	Different life cycles in algae									

12	Toxic algae								
13	Molecular taxono	omy of algae							
14	Assessment								
Second Term									
Week			Торіс						
1	Effect of environmental conditions on the algal growth and metabolicativity								
2	Growth requirem	ents of algae							
3	Phosphate starva	tion, phospho	orus and phosphate content in water						
4	Nitrogen assimil	ation and pro	tein synthesis						
5	Enzymology of n	itrate reducti	on						
6	Nitrogen fixation: nitrogenases, reductant and ATP, factors affecting nitrogen fixation, regulation of nitrogen								
7	The role of algae in economical potential								
8	Algae and water pollution								
9	Algae as source of byproducts such as antimicrobial substances, vitamins, food and as indicator for pollution.								
10	Genetic engineer	ing of algae							
11	Transformation of	of algae							
12	Spirulina the edi	ble alga							
13	Production of Sp	irulina							
14	Assessment								
4. Teaching and learning methods a. Lectures b. Practical training / laboratory c. Seminar / Workshop d. Class Activity 5. Student assessment methods									
Written f	inal exam	to assess	KU, I						
Practical	ractical to assess KU, I, P								

Assessment schedule

Assessment 1	Practical exam	Week	15
Assessment 2	Final exam	Week	16

Weighting of assessments

Final-term Examination 60 %
Practical Examination 40 %
Total 100 %

6. List of references

Essential books (text books)

- Algal Ecology, Freshwater benthic ecosystems, Edited by Stevenson, R.J., Bothwell, M.L., Lowe R.L. Academic Press (1996)
- Algal culturing techniques, Edit Anderson, R.A., Elsivier (2005)
- Algal Physiology and Biochemistry
- The Algae edited by Chapman
- Algae and human affairs Edited by CuroleA.Lembi

Recommended books

• Algae: Anatomy, Biochemistry, and Biotechnology by Barsanti, L. &Gualtieri, P.

Web sites

- www. Algaebase.com
- http://www.ucmp.berkeley.edu/greenalgae/greenalgae.html
- http://www.microscopy-uk.org.uk/index.html?http://www.microscopy-uk.org.uk/pond/algae.html
- http://www.life.umd.edu/labs/delwiche/Charophyte.html
- http://www.dnr.state.md.us/Bay/hab/
- http://www.paleoweb.net/algae/

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active

	learning
	Course coordinator:
	Prof. Atef Abo-Shady
•	Head of Department:
	Prof. AlaaAbou-Zeid

Date: 8 /2014

Tanta University, Faculty of Science

Course Contents - Course ILOs Matrix

Course code: 1531, Course title: Phycology

We eks	Course content/	Prac tical		dund	vledg lersta		Iı	ntell sk	ectu ills	al			tical	<u> </u>	Tı		ferab	ole
	Theoritical	V.C	A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	C 1	C 2	C 3	C 4	D 1	D 2	D 3	D 4
First	t semester																	
1	What are algae		1	1						√			1	√			V	√
1																		
2	Bases of algae classific ation		1	1						V	√			√			√	√
2																		
3	Factors affectin g algae distribu tion		1	1						V		1					√	√
4	Algae and the food they make		√	V						√			V				V	V
5	Algae of streams and rivers		√	V	V	√	√	V				1		√	V			√
6	How algae grow		1					1							1			√

	and reprodu ce														
7	Reprod uction units in algae	√				√	√	√				√			√
8	Algae of Lakes and ponds	V	V	V		V	V	V	V	V					√
9	Effect of light on the distribu tion of algae in Lakes and ponds					√	√	√			√		√	√	√
10	Effect of nutrient s on algae distribu tion	√								√		~	√	√	√
11	Differe nt life cycles in algae	V	√											√	V
12	Toxic algae	V	V			√	√	V		V				√	√
13	Molecul ar taxono my of algae	√	V			V	√	√						√	√
14	Assess ment	1	1			√	√	√		√	V			√	1

Second	<u> </u>														
semest															
1	Effect of environ mental conditio ns on the algal growth and metabol icativity	1	V				1	V	V						V
2	Growth require ments of algae	V	1	√	V	V				√		√	√	√	√
3	Phospha te starvati on, phospho rus and phospha te content in water	V						V	V			√			
4	Nitroge n assimila tion and protein synthesi s	V						V	√		√				
5	Enzymo logy of nitrate reductio n	V						V	1	V				V	√
6	Nitroge n fixation	V	1	√	V						~	~		\nearrow	\checkmark

	1	1		ı	1	1	1	1					
	initrogen ases, reducta nt and ATP, factors affectin g nitrogen fixation, regulati on of nitrogen												
7	The role of algae in econom ical potentia		V							√	√		V
8	Algae and water pollutio n		V								~		√
9	Algae as source of byprodu cts such as antimicr obial substan ces, vitamin s, food and as indicato r for pollutio n.		√							~	7		√

10	Genetic enginee ring of algae				√					√	1				
11	Transfo rmation of algae				V						√				
12	Spirulin a the edible alga				√				√						
13	Product ion of Spirulin a				V				√		√				
14	Assess ment	V	√	√	√	√	√	√				√	√	√	√

Learning and Teaching Methods

						Co	ours	e out	com	es II	LOs					
LearingMethod		nowl and lerst:	d		In	tell Sk	ecti ills	ıal		ofes an Prac Ski	ıd tica			enera ansfe Skil	rab	
	A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4	D1	D2	D3	D4											
Lecture	V V V															
Practical		1 1														

Assessment Methods

						Cou	rse	outc	ome	s IL	Os					
AssessmentMethod s		nowl and derst g	d			tell I Sk				ofes la rac Ski	nd tica		Tr	nera ansi e Sk	fera	abl
	A1	A2	A3	A4	B 1	B2	В3	B4	C1	C2	C3	C4	D1	D2	D 3	D 4
Essay Question																
Practical	V	1			V	√			√							

Course Coordinator: Prof. Atef Abo-Shady

Head of Botany Department: Prof. AlaaAbou-Zeid

TantaUniversity, Faculty of Science

M. Sc. Course specifications of Phycology

A- Basic Information

Title: Biochemistry A	Code: 1532
Coordinator	Prof. Dr. Mohamed El-Anwer
Other Staff	Prof. Dr. Awatif A. Mohsen; Prof. Dr. SayedMorsy
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 2h lectures (First term) 14 x 2h lectures (Second term)

Academic Year: 2014-2015

B- Professional Information

Course aims:

Explore the fundamental principles of plant biochemistry and the mutual response of cell activity with the enzymes and other growth regulator. Teach the students the unusual growth and metabolism of algae under the different stress conditions

2. Intended learning outcomes of course (ILOs)

A-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1- Identify the biochemical processes of the plant cells
- A2- Discuss the role of plant growth regulators in plant metabolism
- A3- Explain the effect of stresses on the plant metabolism.

B- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Critically evaluate the information from a variety of sources
- B2. Demonstrate the principles of plant biochemistry in a manner suitable to their programme of study.
- B3. Discuss the principles, underlying plant metabolism.
- B4. Distinguish the principles underlying the different stresses metabolic regulatory circuits.

C- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Use different methods for biochemistry laboratory manipulation.
- C2. Use statistical to evaluate the efficiency of different methods used in that field.
- C3. Carry out laboratory work

D- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Prepare complete and clear scientific report
- D2. Work with others, use and manage ideas and information prepare of a research proposal
- D3. Prosecute of research by applications of laboratory or field techniques

3. Contents

	First Part
Week	Торіс
1	Pigments of photosynthesis, chlorophyll pigments
2	Carotenoids
3	Phycobiliproteins
4	Comopsition of cell membrane
5	Phospholipids
6	Glycolipids
7	Sulfolipids
8	Other lipids
9	Proteins
10	Structure of cell membranes
11	Interaction of lipids and proteins
12	Molecular architecture of membrane
13	Biosynthesis and assembly of cell membranes
14	Selected papers in the topic of plant physiology
	Second Part
Week	Торіс

1	Glutamine synthetase in higher plants
2	Spatial distribution of glutamine synthetase
3	Regulation of glutamine synthetase
4	Genetic manipulation of glutamine synthetase
5	The glycine decarboxylase complex, structure, function and biothynthesis
6	Glycine decarboxylation and photorespiratory metabolism in C3 plants
7	Metabolic control of glycine
8	Organ and cellular distribution of glycine
9	Glycine decarboxylation in C3-C4 and CAM plants
10	The gene encoding in glycine cleavage complex
11	Glycine serine synthesis in non photosynthetic tissue
12	Processes involved in glutathione metabolism
13	Glutathione degradation
14	Membrane transport of glutathione
	Third Part
	I nirū Part
Week	Topic
Week	
	Торіс
1	Topic Effect of environmental conditions on the growth hormones
1 2	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones
2 3	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones The role of ABA
1 2 3 4	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones The role of ABA Theories of ABA origin and metabolism
1 2 3 4 5	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones The role of ABA Theories of ABA origin and metabolism Carotenoids origin of ABA
1 2 3 4 5	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones The role of ABA Theories of ABA origin and metabolism Carotenoids origin of ABA Response of ABA function to its structure
1 2 3 4 5 6 7	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones The role of ABA Theories of ABA origin and metabolism Carotenoids origin of ABA Response of ABA function to its structure The role of environments in the metabolism of nitrogenous compounds
1 2 3 4 5 6 7 8	Topic Effect of environmental conditions on the growth hormones Growth requirements of hormones The role of ABA Theories of ABA origin and metabolism Carotenoids origin of ABA Response of ABA function to its structure The role of environments in the metabolism of nitrogenous compounds How proline was discover in stress plants

12	Glycine betaine	biothynthesi	S			
13	Fuction of glyc	ine hetaine d	luring stress	1		
			turing stress	,		
14	The role of other	er betaine				
15	Other nitrogeno	ous compound	ds			
4.	Teaching and lear	ning methods				
	1. Lecture					
		al training / lal	boratory		\boxtimes	
	3. Semina4. Class A	r / Workshop				
	4. Class F	Activity			-	
5.	Student assessmen	t methods				
Written	final exam	to assess	KU, I			
Practical		to assess	KU, I, P			
Assessm	ent schedule	_				
ssessment 1	Practical ex	kam		Week	15	
ssessment 2	Final exam	<u> </u>		Week	16	
Weighti	ng of assessments			_		
	Final-term F	xamination			60 %	
	Practical Ex	amination			40 %	
	Total				100 %	
	Total				70	
6.]	List of references					
	ended textbooks					
	nt Physiology and	l Biochemist	ry by Dr. P	. Prasad 2	2007	
Web site	S					
• http	o://www.google.c	om				
• http	o://www.ucmp.be	rkeley.edu/gi	reenalgae/g	reenalgae	e.html	
• http	o://www.life.umd	.edu/labs/del	wiche/Char	ophyte.h	tml	
• http	o://www.dnr.state	.md.us/Bay/l	hab/			
1	o://www.paleowel	. / 1 /				

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Prof. Dr. Mohamed El-Anwer

Head of Department:

Prof. AlaaAbou-Zeid

Date: 8/2014

Course Contents - Course ILOs Matrix

	Course code:		1532		(Cours	e title	e:		В	iocheı	emistry A Transferable						
Week s	Titles		and erstan		Inte	ellect	ual sk	ills		ractic skills			nsfera skills					
		A 1	A 2	A 3	B 1	B 2	B 3	B 4	C 1	C 2	C 3	D 1	D 2	D 3				
1	Pigments of photosynthesis, chlorophyll pigments	√	√	√	V	V	1					√						
2	Carotenoids	√										V						
3	Phycobiliproteins	√										V						
4	Comopsition of cell membrane	√										√						
5	Phospholipids	√										V						
6	Glycolipids	√										V						
7	Sulfolipids	√										V	1	1				
8	Other lipids	√										1		√				
9	Proteins	√	V			1	1	1	1	1	1	V		1				
10	Structure of cell membranes	√	√			√	√	1				√		√				
11	Interaction of lipids and proteins	V	V			V	V	V				V	V	1				
12	Molecular architecture of membrane	√				V	1			1				1				
13	Biosynthesis and assembly of cell membranes	V				V	V	1	1	V				1				
14	Selected papers in the topic of plant physiology	√	V				√	1	√	√	√	V						
15	Glutamine synthetase in	√	√				√	√	√		√	√						

	higher plants													
16	Spatial distribution of glutamine synthetase	V	V				√	V	V		√	V		
17	Regulation of glutamine synthetase	√	V				V	V	V		√	V		
18	Genetic manipulation of glutamine synthetase	√	V			V	V	V	V	V	V	V	V	V
19	The glycine decarboxylase complex, structure, function and biothynthesis	√	√			√	V	V				V	√	√
20	Glycine decarboxylation and photorespiratory metabolism in C3 plants	√	√			V	√	V				√	V	√
21	Metabolic control of glycine	√	√			V	V	V				√	1	V
22	Organ and cellular distribution of glycine			V								V		
23	Glycine decarboxylatioin C3-C4 and CAM plants			1					V	V	√	V		
24	The gene encoding in glycine cleavage complex			V	V	V	V							
25	Glycine serine synthesis in non photosynthetic tissue			V	V	V	V						V	V
26	Processes involved in glutathione metabolism	V					V	V	V			1	√	V

	Glutathione	,					,	,	,			,	,	,
27	degradation	√					√	V	√			V	√	V
28	Membrane transport of glutathione	1					1	V	√			V	V	√
29	Effect of environmental conditions on the growth hormones	√					1	V	V			V		
30	Growth requirements of hormones	V					1		V			V		
31	The role of ABA	V			V					1	1	1		
32	Theories of ABA origin and metabolism	V			1	1								
33	Carotenoids origin of ABA	1			1	1								
34	Response of ABA function to its structure	√		√	√	√							√	V
35	The role of environments in the metabolism of nitrogenous compounds	√		√			V	V	V	V	V	V	V	V
36	How proline was discover in stress plants	√	√	√			√	1	√	√	√	V		
37	Proline metabolism			1						V	1	1		
38	Function of proline in the different stresses			√	V	1				V	V	1		
39	Proline and important enzymes			√	1	√				V				
40	Glycine betainebiothynthesi s	√			√	√								V
41	Fuction of glycine betaine during	V			V	1		1	1				1	V

stress							

								Cou	rse o	utcoi	mes I	LOs					
Learing	gMethod		nowl and lerst	d		Ir		lectu	al			sion actio		General and Transferable Skills			
		A1	A2	A3		B1	B2	В3	B4	C1	C2	C3		D1	D2	D3	
Lec	ture	V	1	V		1	1										
Discu	ussion																
,	rain ming)																
Self-l	learing																
(Es	ssay)																
Field	Trips																
Pra	ctical			1		1				1	1	1					
42	The role betaine	e of o	ther		V	1		√	√		1	/ \				√	V
43	Other ni		enous		V	√					1	/ \	1			1	1

Learning and Teaching Methods

Assessment Methods

		Course outcomes ILOs														
AssessmentMethods	K	In	tell Ski		ıal		an	tical			enera ansfe Skil	rab				
	A1	A2	A3		B1	B2	В3	B4	C1	C2	C3		D1	D2	D3	
Essay Question	V	V				V										

	Course outcomes ILOs															
AssessmentMethods	K	In	tell Ski		ıal	Professional and Practical Skills				General and Transferable Skills						
	A1	A2	A3		B1	B2	В3	B4	C1	C2	C3		D1	D2	D3	
Practical	√	V			1	√			√	V						

Course Coordinator: Prof. Dr. Mohamed El-Anwer

Head of Botany Department:Prof. AlaaAbou-Zeid

M. Sc. Course specifications of Phycology

A- Basic Information

Title: Biochemistry B	Code: 1533
Coordinator	Prof. Mohamed N. El-Shourbagy
Other Staff	Prof. Dr. ElsayedMorsi
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (First term)
	14 x 1h lectures (Second term)

Academic Year :2014-2015

B- Professional Information

1. Course aims:

Extend fundamental concepts and principles of biological knowledge in recent topics of biochemistry of secondary metabolites in the plant cell. Introduce the molecular basis of stress plant physiology. Review the molecular mechanisms of the stress signals and response. Teach the structure of nucleic acids and the flow of genetic information in the cell.

2. Intended learning outcomes of course (ILOs)

A-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1- Demonstrate an understanding of molecular biology and molecular genetics
- A2- Demonstrate knowledge of biochemical pathways of the secondary metabolites in plant cell
- A3- Demonstrate knowledge of response of the plant cell to stress
- A4- Understand the molecular mechanisms of scavenging pathways
- A5- Understand and exchange of knowledge via the internet
- A6- Demonstrate ability to use knowledge using pc software

B- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Critically evaluate the primary literature in plant biochemistry.
- B2. Demonstrate the principles of plant biochemistry in a manner appropriate to

the study of algae.

- B3. Discuss the principles, underlying secondary metabolites, recombinant DNA and gene technology.
- B4. Distinguish the principles underlying biotic stress.

C- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to:-

- C1. Use different methods for biochemistry laboratory manipulation.
- C2. Use statistical to evaluate the efficiency of different methods used in that field.
- C3. Carry out laboratory work

D- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D.1 Use of the Internet sites to access information and prepare a research proposal
- D.2 Prosecute a research by applications of laboratory or field techniques
- D.3 Demonstrate written and verbal communication skills
- D.4 Use of databases and library search methods

3. Contents

	First partNucleic acids and related topics							
Week	Торіс							
1	The function of secondary metabolites							
2	Secondary metabolites in chemosystematics							
3	classification of secondary metabolites							
4	Terpenoids: biosynthesis							
5	Terpenoids: classification							
6	Function of terpenoids and steroids in plants							
7	Phenols: biosynthesis							
8	Mid term exam							

9	Catabolism
10	Phenolic acids and coumarins
11	Alkaloids: biosynthesis
12	Function of alkaloids
13	Porphyrins, purins and pyrimidines: biosynthesis & catabolism
14	Final exam
	Second Part
Week	Торіс
1	Introduction on stress physiology
2	Perception, transduction and signaling pathways of stress
3	Oxidative stress as a common feature of stress
4	Oxidative stress as a regulator of environmental response
5	Sources of free radicals in plant cell
6	Oxidative stress in plant pathogen relationship
7	Oxidative stress and programmed cell death
8	Mid term exam
9	Mechanism of defense and phytotoxicity to oxidative stress
10	Physiological adaptation and response to oxidative damage
11	Free radical scavenging pathways
12	Antioxidant enzymes and molecules
13	Mechanism of ascorbate glutathione cycle
14	Discussion of some selected papers on the course topics

4. Teaching and learning methods

a.	Lectures	\geq
b.	Practical training / laboratory	\geq
c.	Seminar / Workshop	
d.	Class Activity	-

5. Student assessment methods

Written final ex	kam	to assess	KU,I		
Practical		to assess	KU, I,P		
Assessment sc	hedule	1			
Assessment 1	am		Week	15	
Assessment 2	Final exam			Week	16

Weighting of assessments

Final-term Examination 60 %
Practical Examination 40 %
Total 100 %

6. List of references

Essential books (text books)

- Algal Ecology, Freshwater benthic ecosystems, Edited by Stevenson, R.J., Bothwell, M.L., Lowe R.L. Academic Press (1996)
- Algal culturing techniques, Edit Anderson, R.A., Elsivier (2005)
- Physiology and Biochemistry
- The Algae edited by Chapman
- Algae and human affairs Edited by Curole A.Lembi

Web sites

- http://www.emc.maricopa.edu/faculty/farabee/biobk/BioBookDNAMOLGEN.html
- http://www.learn4good.com/bookstore/genetics_books_cds_for_academic_students.htm Sites of publishers of science books and periodicals, e.g.. Springer Verlag, Academic press, Oxford John Wiley and sons. .etc....

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Prof. Mohamed N. El-Shourbagy

Head of Department:

Prof. AlaaAbou-Zeid

Date: 08/2014

Course Contents - Course ILOs Matrix

Course code: 1532				•	Cou	rse t	itle:	Bio	oche	mis	try E	3		
Weeks	Titles	led d sta g		ski	lls		S	skill	S	Transfer able skills				
		A 1	A 2	A 3	B 1	B 2	B 3	B 4	C 1	C 2	C 3	D 1	D 2	D 3
1	Pigments of photosynt hesis, chloroph yll pigments	√	√	√			√	√		√				
2	Carotenoi ds	1	1	1			1	V		1				
3	Phycobili proteins	1	V	1			V	V		V				
4	Comopsit ion of cell membran e			V			V	V		√				
5	Phosphol ipids			1	1	√	1	1	1	1				
6	Glycolipi ds			V					V				V	V
7	Sulfolipi ds			V					V				1	1
8	Other lipids	V	V	V					V				V	
9	Proteins	1	1			V	V	1	V				1	

10	Structure of cell membran es	V	V			V	1	1	V				V	
11	Interactio n of lipids and proteins	V	√			V	V	V	V				√	
12	Molecula r architectu re of membran e	V	V	V				√	√				V	√
13	Biosynth esis and assembly of cell membran es	√	√		V	√	√				√			~
14	Selected papers in the topic of plant physiolog y	V	V		V	V	√				V			√
15	Glutami ne syntheta se in higher plants	V	V								√			V
16	Spatial distribut ion of glutami ne syntheta se	√	√		√	V	√	√	√	1	√			√
17	Regulati on of glutami ne syntheta se	√			√	V					√	√	√	√

18	Genetic manipul ation of glutami ne syntheta se	√		√	V					√		
19	The glycine decarbo xylase complex , structur e, function and biothynt hesis	1		V	V					1		
20	Glycine decarbo xylation and photores piratory metaboli sm in C3 plants	√		√			1	√	√	√		
21	Metabol ic control of glycine	√	√		V	√				√		
22	Organ and cellular distribut ion of glycine	√	\checkmark		√	V				V		√
23	Glycine decarbo xylatioi n C3-C4 and CAM plants		√		√	√				√		√

24	The gene encodin g in glycine cleavage complex		√			√	√	√	√	√	√			√
25	Glycine serine synthesi s in non photosy nthetic tissue	√	√	V	V					√	√	√	√	√
26	Processe s involved in glutathi one metaboli sm				√	√	√			√	\checkmark			
27	Glutathi one degradat ion				√	V	V			√	V			
28	Membra ne transpor t of glutathi one				√	V	√			√	√			
29	Effect of environ mental conditions on the growth hormone s				1					√	√			
30	Growth require ments of hormone s	V	V	√		V	V			V	√			√

31	The role of ABA			V		V	V		V	V			V
32	Theories of ABA origin and metaboli sm			√		√	V		√	√			√
33	Caroten oids origin of ABA			V						V			√
34	Respons e of ABA function to its structur e			√	√					√	√	√	√
35	The role of environ ments in the metaboli sm of nitrogen ous compounds	1	1	1	1	√		1	√				1
36	How proline was discover in stress plants	√				√		√	√				√
37	Proline metaboli sm	V				V		V	V				V
38	Function of proline in the different stresses	V				V		V	√				V

39	Proline and importa nt enzymes	√			V	V	√	√	√			V
40	Glycine betaineb iothynth esis		√	V	V	√	1	√	√	1		√
41	Fuction of glycine betaine during stress		√	√					√	√		√
42	The role of other betaine		V	√					V	√		V
43	Other nitrogen ous compou nds	V		√					V			V

Learning and Teaching Methods

						Co	urse	outco	mes II	LOs				
	Intellectual Skills					d Pr	actic		General and Transferable Sk					
A1	A2	A3		B1	B2	В3	B4	C1	C2	C3		D1	D2	D3
V	√	V		1	V									
	Un A1	Underst A1 A2	Understandin A1 A2 A3		Understanding A1 A2 A3 B1	Understanding Sk A1 A2 A3 B1 B2	Knowledge and Understanding Skills A1 A2 A3 B1 B2 B3	Knowledge and Understanding Skills A1 A2 A3 B1 B2 B3 B4	Knowledge and Understanding Skills Pan Bl B2 B3 B4 C1	Knowledge and Understanding Skills Professional Skills Skills Profession A1 A2 A3 B1 B2 B3 B4 C1 C2	Knowledge and Understanding Skills and Practic Skills Al A2 A3 B1 B2 B3 B4 C1 C2 C3	Knowledge and Understanding Intellectual Skills Professional and Practical Skills Al A2 A3 B1 B2 B3 B4 C1 C2 C3	Knowledge and Understanding Skills Professional and Practical Skills Skills Tran	Knowledge and Understanding Intellectual Skills Professional and Practical Skills Transferab A1 A2 A3 B1 B2 B3 B4 C1 C2 C3 D1 D2

						_	_			-		-		
	٧				1		1	V	√	1				
		<u> </u>	1	1				I						<u> </u>
			A	sses	smei	nt M	ethod	ls						
						Cou	rse o	utcor	nes II	Ωs				
			1									1 .		
				In			al							
Uno	dersta	andin	g	Skills							Skills			
A1	A2	A3		B1	B2	В3	B4	C1	C2	C3		D1	D2	D3
V	V	V			V									
<u> </u>	,	,			•									
ł														
ļ														
√	√			√	√			√	√					
V	√			√	√			√	√					
	Uno	Knowled Understa	Understandin A1 A2 A3	Knowledge and Understanding A1 A2 A3	Asses Knowledge and Understanding A1 A2 A3 B1	Assessmen Knowledge and Understanding A1 A2 A3 B1 B2	Assessment Mo Cou Knowledge and Understanding Skills A1 A2 A3 B1 B2 B3	Assessment Method Course o Knowledge and Understanding Skills A1 A2 A3 B1 B2 B3 B4	Assessment Methods Course outcor Knowledge and Understanding Skills A1 A2 A3 B1 B2 B3 B4 C1	Assessment Methods Course outcomes II Knowledge and Understanding Skills Profess and Profess Skills Skills A1 A2 A3 B1 B2 B3 B4 C1 C2	Assessment Methods Course outcomes ILOs Knowledge and Understanding Skills A1 A2 A3 B1 B2 B3 B4 C1 C2 C3	Assessment Methods Course outcomes ILOs Knowledge and Understanding Intellectual Skills Al A2 A3 B1 B2 B3 B4 C1 C2 C3	Assessment Methods Course outcomes ILOs Knowledge and Understanding Skills Professional and Practical Skills A1 A2 A3 B1 B2 B3 B4 C1 C2 C3 D1	Assessment Methods Course outcomes ILOs Knowledge and Understanding Skills Intellectual Skills Ski

Course Coordinator: Prof. Mohamed El-Shourbagy

Head of Botany Department: Prof. AlaaAbou-Zeid

M. Sc. Course specifications of Phycology

A- Basic Information

Title: Physiology of Microorganisms	Code: 1534
Coordinator	Prof. Atef Abo-Shady
Other Staff	Dr. SamiaShabana
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (First term) 14 x 2h practical (First term)
	14 x 1h lectures (Second term) 14 x 2h practical (Second term)

Academic Year :2014-2015

B- Professional Information

Course aims:

- Provide the students of microbiology with an understanding of the basic principles and core of what are algae and how they live, reproduce and cultivation—Teach the students how to identify algae of lakes, soils, streams and ponds as well as marine algae Explore the fundamental principles of fungal physiology especially spore germination, with reference to dormancy, constitutive dormancy, exogenous dormancy, enzyme complement and biosynthetic process during spore germination.

2. Intended learning outcomes of course (ILOs)

A-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-									
A1.	Recognize the general characteristics of algae.								
A2.	Define the essential enzymes required for growth and metabolism								
<i>A3</i> .	Identify the basis of fungi transformation process.								
A4.	Explain dormancy of fungal spores.								
A5.	Discuss how constitutive dormancy of spores can be broken.								

B- Intellectual skills

By the end of the M. Sc. course the graduate must be able to: B1. Illustrates the germination of spores and its requirement. B2. Demonstrate the role of Algae in water quality. B3. Distinguish the principles, underlying fungi metabolism. B4. Demonstrate how to use algae as biomarkers and indicators for water pollution. B5. Assess how algae affect our life

C- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C1. Use different methods for fungi laboratory manipulation.
- C2. Use statistical to evaluate the efficiency of different methods used in that field.
- C3. Manage strategy for fungi metabolism and transformation processes by fungi
- C4. Prosecute of research by applications of laboratory or field techniques

D- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Work safely, competently and effectively in the laboratory
- D2. prepare complete and clean scientific report
- D3. work with others, use and manage ideas and information
- D4. Draw and label curves, habits, sections etc.

3. Contents

A. Theoritical

	Physiology of microalgae							
Week	Торіс							
1	What are algae?							
2	Algae and the food they make							
3	Algae of streams and rivers							
4	Methods for studying phytoplanktons							
5	How algae grow and reproduce							
6	Cell division in diatoms							
7	Reproduction units in algae							

8	Algae of Lakes and ponds
9	Effect of light on the distribution of algae in Lakes and ponds
10	Effect of nutrients on algae distribution
11	Toxic algae
12	How to determine the toxins in water
13	Algae as indicators for water quality and pollution
14	Assessment
	Physiology of Bacteria
Week	Торіс
1	Origin of cellular life
2	Taxonomy and classification of microbes
3	Size, distriburion and identification of bacteria and archaea
4	Structure and function of cell wall of bacteria
5	Structure and function of plasma membrane of bacteria
6	Structure and function of pili, flagella, capsules of bacteria
7	Structure and function of ribosomes, inclusions, chromosome, plasmid of bacteria
8	Nutritional requirement of bacteria
9	Physical requirements for bacterial growth
10	environmental requirements for bacterial growth
11	Antimicrobial agents
12	Bacterial mechanisms of antibiotic resistance
13	Bacterial reproduction and growth curve
14	Positive and negative aspects of bacteria
15	Assessment

B. Practical

	Algae and physiology of algae(4 hour / week)
Week	Торіс
1	Isolation of algae from different sources
2	Purification of isolated algae 1
3	Purification of isolated algae 2
4	Different methods of measurement of algal growth
5	Measurement of growth curve by OD
6	Measurement of growth using biomass productivity
7	Studying the effect of carbon source on algal growth
8	Field trip for collection of seaweed
9	Studying the effect of organic compounds on algal growth
10	Effect of nitrogen and phosphorus nutrition on growth.
11	Oxidative stress caused by H2O2
12	Antimicrobial activity by some of the isolated algae
13	Antimicrobial production from seaweeds
14	Assessment
	Physiology of Bacteria(2 hour / week)
Week	Topic
1	Safety in microbiological labs
2	Isolation of bacteria from common sources
3	cultivation of bacteria on different media
4	colony descriptions
5	purification of bacterial isolates
6	biochemical methods (1) for identification of bacteria
7	biochemical methods (2) for identification of bacteria
8	preparation of bacterial suspensions and smears

9	simp	le and negativ	e stains				
10	Gran	n stain, Acid t	fast stain,				
11	capsı	ule stain, End	ospore stain				
12	isola	tion of plasmi	ds				
13	detec	ction of some	virulence facto	or genes			
14	Revi	sion					
		c. Semina	es al training / lab ar / Workshop Activity	ooratory			⊠ ⊠ □ -
			methous				
Written	final ex	am	to assess	KU, I			
Practical			to assess	P			
Assessm	ent scl	nedule	1				
ssessment 1		Practical ex	am		Week	15	
Assessment 2		Final exam			Week	16	
Weighti	ng of a	ssessments			_		
,, e-g	_	Final-term Ex	kamination			60	%
		Practical Exa	mination			40	%
		Total				100	%
		Total				100	
6.]	List of	references					
Essentia	l books	(text books)					
_			hwater benthe R.L. Acade	=		dited	by Stevenson, R.J.,
• Alg	al cul	turing techn	iques, Edit A	nderson, R	.A., El	sivier ((2005)
	_		Second Edition ublication, N	-		riffin,	Wiley-Liss, A John
	vances	in Fung Edited	gal Biotech by Tka			lustry, S.;	Agriculture, and Lange, Lene

Springer 2004

Recommended books

Fungal Genomics - Applied Mycology and Biotechnology volume 4
 Edited by D K Arora and G GKhachatourians
 Elsevier February 2004

Web sites

http://www.google.com

http://www.Algaebase.com

http://www.elsevier.com/books/title/a

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Prof. Atef Abo-Shady

Head of Department:

Prof. AlaaAbou-Zeid

Date: 08/2014

Course Contents - Course ILOs Matrix

Course code:							(Coui	rse t	itle	: Pl	hysid	olog	y of	f alg	gae+	Phy	/siol	ogy	of	fung	gi					
Course Contents / The oritical	Pra ctic al				dge						Inte	ellec	tual					I	Prac	etica	ıl		7	ran	ıferı	rabl	e
Physio of alga		A 1																D 4	D 5								
Wha t are alga e?		√	√				√	√	√	√				√											√	√	√
	Isol atio n of alg ae fro m diff ere nt sou rces																√	V	1	√							
Alg ae and the food they mak e		1	√				√			√				√												√	√
	Pur ific atio n of																√		√	√	V	√					

	isol ate d alg ae 1																					
Alg ae of stre ams and rive rs			V	√				V	1									√	√	√	1	√
	Pur ific atio n of isol ate d alg ae 2											√	√	√	√	√	√					
Met hod s for stud ying phyt opla nkto ns		V				√	√	V													V	V
	Dif fere nt met hod s of mea sur eme nt of alg al gro wth											~	~		~	~	√					
Ho w						V	V														V	V

alga e gro w and repr odu ce																					
	Me asu rem ent of gro wth cur ve by OD													~	V	~	~				
Cell divi sion in diat oms		√	V				√	√												√	V
	Me asu rem ent of gro wth usi ng bio mas s pro duc tivi ty												~	~		~	√				
Rep rodu ctio n unit s in alga e		1			1	1					1	1						1	1		

	Stu dyi ng the effe ct of car bon sou rce on alg al gro wth												~	√	~	√	√			
Alg ae of Lak es and pon ds			√	$\sqrt{}$	$\sqrt{}$				√	√								√		
	Fiel d trip for coll ecti on of sea wee d												√	√						
Effe ct of ligh t on the distr ibut ion of alga e in Lak es and							√	√										~		

pon ds																								
	Stu dyi ng the effe ct of org ani c com pou nds on alg al gro wth															~	V	~	√	V				
Effe ct of nutr ient s on alga e distr ibut ion						V	√	√			~	~	√	~							1	~	√	7
	eff ect of nitr oge n and pho sph oru s nutr itio n on gro wth														~	~	√							
Tox ic		1	1	1	1	V	1					√	V	V										

alga e																									
	Oxi dati ve stre ss cau sed by H2 O2													√	√		√	√	√						
Ho w to dete rmi ne the toxi ns in wat er		V	V	V		V	V	V	V	√	√	√	V								V	V	√	√	√
	Ant imi cro bial acti vity by som e of the isol ate d alg ae															~	~	~	~	√					
Alg ae as indi cato rs for wat er qual		V	V	V		V	V	V	V	V	V	√	V					√		V	V	V	V	V	V

and poll utio n																											
	Ant imi cro bial pro duc tion fro m sea wee ds																√		1				V				
Ass ess men t		V	1	√	V	V	1	1	1	1	√	√	√	√	√	√							1	V	√	V	V
	Ass ess men t																√	√	V	√	V	V					
Physio of Bac	logy teria																										
Orig in of cell ular life		V	√				√	√	√	√				√											√	√	√
																	V	1	V	V							
Tax ono my and clas sific atio n of micr obes		٨	1				1			1				√												V	V
																	√			V	√	√					

Size																					
distr ibur ion and iden tific atio n of bact eria and arch aea		~	$\sqrt{}$				\checkmark	√									$\sqrt{}$	√	√	√	√
											1	1	1	1	1	1					
Stru ctur e and func tion of cell wall of bact eria	1				√	V	V													1	√
											1	V		1	V	1					
Stru ctur e and func tion of plas ma me mbr ane of bact eria					~	√														√	~

															1	1		V	1				
Stru ctur e and func tion of pili, flag ella, caps ules of bact eria	√ ×	√					√	√														√	√
														~	~			√	√				
Stru ctur e and func tion of ribo som es, incl usio ns, chro mos ome , plas mid of bact eria	√				√	√						~	~							√	√		
															V	V	V	√	V				
Nutr itio nal requ			√	V	V				V	1										V			

irem ent of bact eria																	√	√								
Phy sica l requ irem ents for bact erial gro wth								√	√									V				√				
																	V	V	1	V	V					
envi ron men tal requ irem ents for bact erial gro wth					√	√	~					√	√	√	√								√	√	√	V
Anti micr obia 1 age nts	√	√	√	√	√	√							√	√	√	~	√	√ 								
															1	√		√	1	√						
Bact erial mec hani	1	V	1				√	V	1	V	V	√	√	√								√	√	√	V	√

sms of anti biot ic resi stan ce																										
Bact erial repr odu ctio n and gro wth curv e		V	V	V				√	V	√	√	√	√	√	√		~	√ ·	√ √	~	~	√	V	√	√	√
Posi tive and neg																			•							
ativ e aspe cts of bact eria		√	√	√				√	√	√	√	√	√	√	√							√	√	\checkmark	√	√
	Ass ess men t																√	V	V	√	√					
Ass ess men t		1	V	V	V	V	√	√	V	V	√	V	V	√	√	V						√	V	√	√	V

Learning and Teaching Methods																			
		Physiology of Algae																	
	Course outcomes ILOs																		
	ŀ	Kno	wle	dge	:						Pr	ofes	ssio	n a	General and				
LearingMetho d	Uı	a 1der	nd sta g	n	In		llec kil	etu: Is	al	l and Practical Skills				Transferable Skills					
	A1	A2	A3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	C1	C2	С3	C4	D1	D2	D 3	D 4	
Lecture																			
Discussion (Brain Storming)																			
Self-learing (Essay)																			
Field Trips																			
Practical																			

Assessment Methods

		Physiology of Algae																		
	Course outcomes ILOs																			
AssassmentMathe	ŀ	knov a	wle ind	dge)	Iı	ıte	lle	ctu	a		rofe al a		n	Gener l and					
AssessmentMetho ds		Understandin g						l Skills					Practical Skills				Transferabl e Skills			
	A1	A2	A3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	C1	C2	С3	C4	D1	D2	D 3	D 4		
Essay Question										7										
Practical											V									
AssessmentMetho ds																				

Course Coordinator: Prof. Atef Abo-Shady

Head of Botany Department: Prof. AlaaAbou-Zeid8/ 2014

M. Sc. Course specifications of Phycology

A- Basic Information

Title: Biostatistics	Code: 1518
Coordinator	Professor Kamal Shaltout
Other Staff	Dr. Mohamed Abdelmonsef
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	14 x 1h lectures (First term)
	14 x 1h lectures (Second term)
	14 x 2h practical (Second term)

Academic Year: 2014-2015

B- Professional Information

1. Course aims:

- Achieve a comprehensible form of the too much data that characterizes the modern biological research. Apply statistical tests for evaluating differences, variations and associations between populations and their significance in probability terms Teach the students the modern software programs for statistical analysis and to interpret and make inferences from analysis of set of observations sampled from a population. Find out the best possible experimental design that provides the best sorting out of the controlled and uncontrolled variations.

2. Intended learning outcomes of course (ILOs)

A-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the role of the biostatistics in the procedure of the biological scientific research.
- A2. Recognize the association between variables in normal and non-normal distributed populations (correlations and regressions).
- A3. Compare between each pair of treatments in multi-treatment experiments
- A4. Explain the tests of significance of difference between two or more than two sampled populations.
- A5. Discuss the application, advantages and disadvantages of the different types of experimental designs.

B- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- C4. Differentiate between the characteristics of the different types of distributions
- C5. Demonstrate the principles and approaches underlying current methods of biostatistics and its application using computer software programs
- C6. Apply the best suitable statistical tests for the different biological experiments
- C7. Design suitable experimental
- C8. Analyze the results statistically

C- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- B1. Perform the best suitable statistical tests for the different biological experiments
- B2. Provide the statistical consultation for the students and researchers of biology.
- B3. Prepare the suitable experimental design and how to analyze the results statistically

D- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D9. Use databases and library search methods as well as internet sites
- D10. Independent learning ability required for continuing professional development
- D11. Work with others, use and manage ideas and information .
- D12. Demonstrate written and verbal communication skills on modern approaches

3. Contents

Week	Торіс
1	Introduction about Biostatistics as a tool of scientific research
2	Sampling of attributes
3	Frequency and probability distributions
4	Normal distribution
5	Binomial distribution
6	Frequency and probability distributions
7	Normal distribution and Binomial distribution
8	Poisson distribution
9	Tests of significance

10	Round-up discussion on the previous topics
11	Partial examination
12	Introductory note on analysis of variance
13	Data transformations, One-way analysis of variance
14	Some basic experimental designs (completely random, randomized complete block and Latin square designs)
15	Two-way analysis of variance
16	Split-plot experimental design Split-plot experimental design
17	Least significant difference (LSD)
28	Least significant range (LSR) tests
29	Simple linear regression
20	Simple linear regression
21	Rank correlation
22	Curve fitting
23	method of least squares
24	Multiple correlation, regression and analysis of time series
25	Multiple regression
26	Analysis of time series
27	Round up discussion on the previous topics
28	Round up discussion on the previous topics
L	-

4. Teaching and learning methods

a.	Lectures	\boxtimes
b.	Practical training / laboratory	\geq
c.	Seminar / Workshop	
d.	Class Activity	_

5. Student assessment methods

Written final exam	to assess	KU, I
Practical	to assess	P

Semester work	to	assess	-			
Assessment se	chedule					
Assessment 1	Practical exam			Week	15	
Assessment 2	Final exam			Week	16	
				J		

Weighting of assessments

Final-term Examination 60 %
Practical Examination 40 %
Semester work - %
Total 100 %

6. List of references

Essential books (text books)

- Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA
- Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.
- Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA
- Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Recommended books

- Voelkl, K. E. & Gerber, S. B. 1999. Using SPSS for Windows: Data Analysis and Graphics. Springer, New York, USA.
- Stephens, L. J. 1998. Beginning Statistics. Schaum's Outline Series, McGraw-Hill. New York, USA.

Web sites

- www.google.com
- http://www.accessexcellence.org/RC/genetics.htm
- www.researchnavigator.com

7. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.

- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

Professor Kamal Shaltout

Head of Department:

Prof. AlaaAbou-Zeid

Date: 08/2014

TantaUniversity, Faculty of Science

Course Contents - Course ILOs Matrix

	Course code:			1518				Cou	rse t	itle:					statis	tics		
W	Titles			wledg erstan]	Intelle	ectual	skills	S		ractic skills		Tra	nsfera	ble S	kills
''	1100	A 1	A2	A3	A4	A5	B1	B2	В3	B4	B5	C1	C2	C3	D1	D2	D3	D4
	Introduction																	
	about																	
1	Biostatistics as								$\sqrt{}$									$\sqrt{}$
1	a tool of					'	,	,	•				,					'
	scientific																	
	research																	
2	Sampling of attributes								$\sqrt{}$									$\sqrt{}$
	Frequency and																	
3	probability								$\sqrt{}$									$\sqrt{}$
5	distributions					'	,	'	•				•					`
	Normal	,	,	,	,	,	1	1	,				1					1
4	distribution																	$\sqrt{}$
5	Binomial	V				V	V	1		V					V	V	V	$\sqrt{}$
3	distribution	-V				-V	V	·V	V	-V					-V	-V	-V	V
	Frequency and																	
6	probability																	$\sqrt{}$
	distributions																	
	Normal																	
7	distribution and																	$\sqrt{}$
	Binomial																	
	distribution Poisson																	
8	distribution																	$\sqrt{}$
	Tests of	,											,	,	,	,	,	,
9	significance																	$\sqrt{}$
	Round-up																	
10	discussion on	V					.1	.1				. 1	. 1	.,	V	.1	.1	. 1
10	the previous	N					V	V							N	1	V	$\sqrt{}$
	topics																	
11	Partial								$\sqrt{}$									$\sqrt{}$
11	examination	'			•	'	,	'	•								,	,
	Introductory	,			,	,	1	,	,								,	,
12	note on analysis					V	V	V	$\sqrt{}$								V	√
	of variance																	
	Data transformations,																	
13	One-way					V												$\sqrt{}$
13	analysis of	\ \ \			٧	, v											, v	·
	variance																	
	Some basic																	
14	experimental						$\sqrt{}$				V							
14	designs			V	٧		٧				\ \	l v						
	(completely																	

	random,															
	randomized															
	complete block and Latin															
	square designs)															
	Two-way															
15	analysis of															
	variance															
	Split-plot															
	experimental															
16	design Split- plot							$\sqrt{}$								
	experimental															
	design															
	Least															
17	significant							$\sqrt{}$			V					
1 /	difference	'			'	,	,	,	'	'	'					
	(LSD) Least															
	significant															
18	range (LSR)											$\sqrt{}$				
	tests															
19	Simple linear	V			V	1	V						1			√
19	regression	٧			٧	V	٧					٧	V			٧
20	Simple linear		V	V								$\sqrt{}$				
	regression Rank															
21	correlation											\checkmark			$\sqrt{}$	$\sqrt{}$
22	Curve fitting	√			√		√	√	√	√	V				√	√
	method of least									,					,	
23	squares	$\sqrt{}$			$\sqrt{}$			$\sqrt{}$							$\sqrt{}$	$\sqrt{}$
	Multiple															
	correlation,	,			,	,	,	,	,	,	,					,
24	regression and				$\sqrt{}$			$\sqrt{}$								$\sqrt{}$
	analysis of time															
	series Multiple				,											
25	regression							$\sqrt{}$							$\sqrt{}$	
2.5	Analysis of	,	,		,			1					1	1	ı	
26	time series		√					$\sqrt{}$						V	$\sqrt{}$	

Learning and Teaching Methods

				1	ıcai i	ning	anu	1 1 0	СПШ	gwi	tiiiou	13						
		Physiology of Algae																
	Course outcomes ILOs																	
LearingMethod	Knowledge and Understanding						Intellectual Skills				Professional and Practical Skills			General and Transferable Skills				
	A1	A1 A2 A3 A4 A5 B1 B2 B3 B4 B5					B5	C 1	C2	C3		D1	D2	D3	D4			
Lecture		V V V V V						7										
Practical																		

Assessment Methods

	1				1 10				ctilo								
								Ph	ysio.	logy	of A	lgae					
	Course outcomes ILOs																
AssessmentMethods	Knowledge and Understanding					Intellectual Skill				Professional and Practical Skills			General and Transferable Skills				
	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C 1	C2	C3	D1	D2	D3	D4
Essay Question		$\sqrt{}$															
Practical											√	√					
			1	1	1		1										

Course Coordinator: Prof. Kamal Shaltout

Head of Botany Department: Prof. Alaa Abou-Zeid

Tanta University, Faculty of Science

M. Sc. Course specifications of Phycology

Department offering the programme	Botany Department
Department offering the course	Botany
Academic year / Level	2014/2015, Two terms
Date of specification approval	08/2014

A- Basic Information

Title: Computer	Code: 1573
Tutorial:	Practical: 1
Total:	
Coordinator	Prof. Mohamed El-Awady
Other Staff	Prof. Mahmoud Kamel, Prof. Ahmed
	El-Shishtawy, Prof. QadryZakaria
Pre-Requisite	GC level Biology or its equivalent
Course Delivery	Lectures: 28 x 1h lectures
	Practical: 28 x 1h lectures

B- Professional Information

2. course aims:

Develop students' capability for information retrieval and presentation, and proficiency in the use of IT effectively in the context of their studies. Develop Underpin academic work throughout postgraduate studies.

Provide opportunities to develop skills required for team working, oral presentation of scientific material, and career choices.

2. Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

A7. Recognize the diverse media and hardware and software that help to benefit of the IT in the context of the postgraduate studies.

Arrange powerful presentation using sophisticated software packages.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B2. Integrate different application programs to develop effective information analysis and presentation.
- C2. Solve scientific problems using computer programming.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- e. Use a number of computer packages to present information.
- f. Perform necessary graphical, statistical and frequency analyses of different types of data.
- g. Use of different internet resources.
- h. Use of different photo enhancing and manipulation techniques.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

D9.Internet/electronic resources to obtain subject specific information, and to develop lifelong learning skills that can be applied to suitable research problems.

3. Contents

Lectures 1-2 Methods for graphical representations, Data analysis and Data modeling

Assignment 1: Using Application programs

Calculation of Slope and intersection of lines,

Best fitting for data,

Extracting Trend , and Equations for acquired data (linear – exponential- logarithmicetc)

Lectures 3-5 Statistical Data analysis

Assignment 2: Using Application programs

Apply some statistical function such as Average, Median, STDEV, and Correlation on a simulated data

Lecture 6-7 Creating powerful presentation including charts, images, video, etc and different attractive animations

Assignment 3: Using PowerPoint program

Design a real and powerful presentation with different acquired skills

Lecture 8-9	Use of internet capa	bilities and searching engines	
	Assignment 4: Usin	g the Internet	
	Life search on the ir	nternet for some real information	
Lecture 10-11	Creating Data Base	and related Queries and Reports	
	Assignment 5: Usin	g Application programs	
	Creating a real Data to extract useful info	a Base and apply different queries and re ormation	ports
Lecture 12-13	Computer programn	ning language	
	Assignment 6: Prog	ramming using Visual Basic 6	
	Solving real problem	ns using a computer language	
Lecture 14-15	Photo manipulation	and enhancement using the photoshop	
	Assignment 7: Usin	g the Photoshop program	
	Practicing on manip	ulation and enhancing of images	
Lectures 16		frequency analysis using Fourier analysi on searching for periodicities	s and
4. Teachir	ng and learning methods		
	a.Lectures		
	b.Practical training /	laboratory	
	c. Seminar / Worksh	ор	
	d.Class Activity	-	
5. Student	t assessment methods		
Written final exa	to assess	KU, I	
Practical	to assess	P	
Semester work	to assess	-	
Assessment sch	edule	<u> </u>	
ssessment 1	Practical exam	Week 15	

ssessment 2	Final exam	Week	16		
Weighing o	of assessments				
	Final-term Examination		60	%	
	Practical Examination		40	%	
	Semester work		-	%	
	Total		100	%	
6. List	t of references				
Course note	S				
	no particular book(s) recommen poks (text books)	ded.			
Recommend	ded books				
Web sites					
	ilities required for teaching and l	earning			
	screens and writing Boards nercial computer scientific soft	ware packages	J.		
Course coo	rdinator:				
Prof. Mohar	med El-Awady				
Head of De	partment:				
Prof. AlaaA	bou-Zeid Tanta University,	Faculty of Sc	ience		
D / 04	Course Contents –				

Course code: 1557. course title: Computer

Date:

08/2014

Course	W																				
Content s	ee ks			ledş rsta				Inte	ellec	tual	[Pr	acti	cal]	Γrar	ıfer	rabl	e
		A 1	A 2	A 3	A 4	A 5	B 1	B 2	B 3	B 4	B 5	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5
Method s for graphic al represe ntations , Data analysi s and Data modeli ng	1	√					✓	√				✓	✓	✓	√		√				
Assign ment 1: Using Applic ation programs Calcula tion of Slope and intersection of lines, Best fitting for data, Extracting Trend, and Equations for	2	✓						✓					✓	✓	✓						

acquire d data (linear - expone ntial- logarith micetc)													
Statisti cal Data analysi s	3	✓		→	→		√	√	✓	>	✓		
Assign ment 2: Using Applic ation progra ms Apply some statistic al functio n such as Averag e, Median, STDEV, and Correla tion on a simulat ed data	4	V		>	>		\ <u>\</u>	\ <u>\</u>	*	>	\hat{\}		
Creatin g powerf ul present ation	5	✓		✓	✓		√	✓	√	✓	√		

includi ng charts, images, video, etc and differen t attracti ve animati ons													
Assign ment 3: Using Power Point progra m Design a real and powerf ul present ation with differen t acquire d skills	6	✓					\	\	>	•	*		
Use of internet capabili ties and searchi ng engines	7	✓		✓	✓		>	>	>	\	\		
Assign ment 4:	8	√		✓	✓		√	✓	√	✓	✓		

Using			1											
the														
Interne														
t														
•														
Life														
search														
on the														
internet														
for														
some														
real														
informa														
tion														
Creatin	9	✓		✓	✓			✓	✓	✓	✓	✓		
g Data														
Base														
and														
related														
Queries														
and														
Reports														
Assign	10	√		✓	✓			√	√	✓	✓	√		
Assign ment	10	•			*			ľ	•	•	•	ľ		
5:														
Using														
Applic														
ation														
progra														
ms														
Creatin														
g a real														
Data														
Base														
and														
apply														
differen														
t														
queries														
and														
reports														
to														
extract														
useful														
informa														
ıntorma						1								

tion													
Comput er progra mming languag e	11	✓		✓	√		✓	√	✓	√	✓		
Assign ment 6: Progra mming using Visual Basic 6 Solving real proble ms using a comput er languag e	12	>		>	>		>			>	>		
Photo manipu lation and enhanc ement using the photosh op	13	\		\	✓		\	\	>	\	\		
Assign ment 7: Using the Photos hop progra m Practici ng on	14	~		√	✓		√	√	√	√	√		

manipu lation and enhanci ng of images													
Introdu ction to Data frequen cy analysi s using Fourier analysi s and Fourier transfor mation searchi ng for periodi cities	15	*		•	>		\	\	*	*	\		
Assess ment													

Learning and Teaching Methods

								Co	ours	se o	utc	ome	es II	LOs	3					
]	Kno	owl	edg	e						Pı	rof	ess	ion	al	(Gei	1era	l aı	ı d
LearingMetho			and	ı		Ir	itel	llec	tu	a l		:	and	ì]	Γra	nsfe	rab	ole
d	U	nde	erst	and	lin		\mathbf{S}	kil	ls			Pra	ecti	ical	l			Skil	ls	
u			g									S	kil	ls						
	A 1	12	13	1.1	A5	В	В	В	В	В	\mathbf{C}	\mathbf{C}	C	\mathbf{C}	\mathbf{C}	D1	D2	D	D	D
	AI	AZ	AJ	/ 14	AS	1	2	3	4	5	1	2	3	4	5	וע	DZ	3	4	5
Lecture																				
Discussion																				
(Brain																				
Storming)																				
Self-learing																				
(Essay)																				
Field Trips																				
Practical												\checkmark	7		\checkmark					

Assessment Methods

								Co	urs	e oı	utco	me	s II	LOs	5					
AssessmentMetho ds	Unc	a	nd			Iı	ite 18	lle Ski		a		l Pra	ess an cti kil	d cal			ra	iera nsfe Skil	rab	
	A1	A 2	A 3	A 4	A5	В 1	B 2	B 3	B 4	B 5	C 1	C 2	C 3	C 4	C 5	D 1	D 2	D 3	D 4	D 5
Essay Question	V			V	1															
Practical											1		√		1					

Course coordinator: Prof. Mohamed El-Awady

Head of -- Department: Prof. AlaaAbou-Zeid

Diploma program of Microbiology

Diploma program specifications of Microbiology

Program parent Department	Botany Department
Academic year	2014/2015
Date of specification approval	8/2014

A- Basic Information:

Program title:	Diploma Degree in Microbiology.
Program type	Single.
Coordinator:	Head of Botany Department.
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Date of Delivery	Every year in June
Review Date	Internal Periodic Review, every Summer

B- Professional Information

1- Program aims:

Deliver students with a broad understanding of the fundamental principles of Microbiology emphasizing Fungi, Bacteriology and Virology and its impact on human, animals and plants.

Study the diverse aspects of the field of microbiology, including biochemistry, ecology, genetics, molecular biology, pathogenicity, phylogeny, industrial application of microorganisms in different fields. The program aimed to prepare the students to diploma program in the field of microbiology or to the professional employment. Equip students with IT and statistical parameters to present and edit their data.

3. Intended learning outcomes of course (ILOs)

A. Knowledge and understanding:

By the end of the programme successful students who have attended regularly and completed required work will be able to know and understand of:

- A1. The main concepts of biology- microbiology and related basis of chemistry, physics and mathematics.
- A2. The fundamental principles of Microbiology emphasizing Fungi, Bacteriology, Virology, and immunology
- A3. The role of microorganisms at industrial and environmental levels.
- A4. The diverse aspects of the field of microbiology, including biochemistry, ecology, genetics, molecular biology, pathogenicity, phylogeny, industrial application of microorganisms in different fields.

B. Intellectual skills:

By the end of the program successful students who have attended regularly and completed required work will:

- B1. use integrated approaches to problem solving
- B2. transfer appropriate knowledge and methods from one topic to another within the overall subject
- B3. plan, conduct and write a report on an independent project
- B4. the ability to comprehend, analyze and criticize published information in microbiology; and formulate hypotheses independently or with the minimum of assistance

C. Professional and practical skills:

- C1. Search, select and utilize appropriate computer software in order to achieve literature searches effectively to find information on a specific topic.
- C2. Analyze data from his experimental work and other people's experiments and to interpret them in the light of published work.
- C3. Select and apply a range of practical skills relevant to the chosen areas of Microbiology.
- C4. Propose and Carry out practical work, in the field and in the laboratory, with minimal risk.

D. General and transferable skills:

By the end of the programme successful students who have attended regularly and completed the proposed work will be able to:

- D1. communicate scientific ideas, give oral and poster presentations and work as part of a research team.
- D2. use library resources and other information sources.
- D3. plan their career.

3. Academic standards

The Academic Reference Standards for the award of master in Plant physiology As well as the attributes and capabilities of the graduate. This program gives an opportunity to:

- Provide students with the main basic and updated concepts of microbiology at advanced level.
- Deliver students with a broad understanding of the fundamental principles of Microbiology emphasizing Fungi, Bacteriology and Virology and its impact on human, animals and plants

- Study the diverse aspects of the field of microbiology, including biochemistry, ecology, genetics, molecular biology, pathogenicity, phylogeny, industrial application of microorganisms in different fields.
- Equip students with IT.

3.A External references for standards (Benchmarks):

In order to fulfill international standards, our students should acquire

I. Knowledge and Understanding:

Approaches to study and forms of subject knowledge likely to be common to Microbiology degree program will include the following:

knowledge and understanding of the processes and mechanisms of microbes.

From molecular to cellular level

From microbial cell metabolic pathways to the community and environment benefits.

- engagement with the essential facts, major concepts, principles and theories associated with Microbiology.
- understanding of information and data, and their setting within a theoretical framework.
- familiarity with the:
 - Classification systems as appropriate.
 - Methods of acquiring, interpreting and analysing microbiological information with a critical understanding of the appropriate contexts for their use through the:
 - Study of texts.
 - Original papers.
 - Reports and data sets.
- Developing knowledge about the diversity of microorganisms and its evolution.
- Knowledge of a range of practical techniques and methodologies, including:
 - Data analysis.
 - Use of statistics.
- Engagement with current developments in microbiology and their applications, and the philosophical and ethical issues involved.
- The applicability of the biosciences (Microbiology) to the careers to which graduates will be progressing.

II. Skills

E. Generic skills

 an appreciation of the complexity and diversity of life processes through the study of immunology, microorganisms, viruses, bacteria, yeasts and fungi, their molecular, cellular and

- physiological processes, their genetics and evolution, and the interrelationships between them and their environment.
- the ability to read and use appropriate literature with a full and critical understanding.
- the capacity to give a clear and accurate account of a subject
- critical and analytical skills: a recognition that statements should be tested and that evidence is subject to assessment and critical evaluation.
- the ability to employ a variety of methods of study in investigating,
 recording and analyzing microbiological topics or idea of research
- the ability to think independent, set tasks and solve problems.

F. Key skills (graduate)

The specific key skills that should be developed in Microbiology degree courses are subdivided into:-

1. Intellectual skills

- Recognizing and applying subject-specific theories, concepts or principles. For example:
 - The relationship between genes and proteins.
 - The nature of essential nutrients in microbes
 - Analyzing and summarizing information critically, including published research or reports;
- Obtaining and integrating several lines of subject-specific evidence to formulate and test hypotheses;

Applying subject knowledge and understanding to address familiar and unfamiliar problems

2. Practical skills

- Designing, planning, conducting and reporting on investigations.
 The data may be obtained through:
 - Individual.
 - group projects.
- Obtaining, recording, collecting and analyzing data using appropriate techniques in the field and/or laboratory, working by themselves or in a group.
- Undertaking field and/or laboratory investigations of living systems in a responsible, safe and ethical manner.
- Preparing, processing, interpreting and presenting data, using appropriate qualitative and quantitative techniques:
 - Statistical programmes.
 - Spreadsheets.
 - Programs for presenting data visually.

- Solving problems by a variety of methods including the use of computers.
- Using the internet and other electronic sources critically as a means of communication and a source of information.

3. Interpersonal and teamwork skills

- Identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles.
- Recognizing and respecting the views and opinions of other team members.
- Negotiating skills.
- Evaluating performance as an individual and a team member;
 evaluating the performance of others.
- Developing an appreciation of the interdisciplinary nature of science and of the validity of different points of view.

4. Self-management and professional development skills

- Developing the skills necessary for self-managed and lifelong learning (e.g. working independent, time management and organization skills).
- Identifying and working towards targets for personal, academic and career development.
- Developing an adaptable, flexible, and effective approach to study and work.

3.B-Comparison of provision to external references:

International Academic Standards (NARS)

- Although the provision is quite comparable to its benchmark there are a number of points that should be highlighted for the purpose of achieving advancement in the specifications and qualities of the Microbiology program at Botany Department, Faculty of Science, Tanta University as follows:
- Searching for new antimicrobial compounds, microbial genetic diversity and microbial enzymes applications.
- Skill of performing diverse laboratory techniques of molecular biology important in the improving quality and quantity of crops yield and controlling plant pathogens should be stressed upon. Furthermore, skills of performing Laboratory food analysis to evaluate the food mycological toxin as health dangerous agent should be addressed.
- Microbiology Diploma students should acquire proper skills to keep up with the microbiological literature and to appreciate the need for life-long continuing education, starting the day after their graduation.
- Students should have the aptitude of critical evaluation, synthesis and interpretation of botanical information and data, production of botany-

specific scientific documentation, and presentation of botanical information and arguments clearly and correctly in writing and orally, to both specialist and lay audiences.

•

- 1. **4.a.Program duration:** One academic year (2 semesters).
- 2. 4.b.Program Structure:
- 3. All applicants admitted to the diploma program are required to study 6 selected theoretical courses and one practical course approved by the department council from the master courses offered by the department for one academic year. A part of the M.Sc. courses offered by the Botany Department, the student should study a course in English language for a minimum one hour per week. Albeit, students who have taken equivalent English language course may be exampled from it upon the recommendation of the Faculty Council.
- 4. No. of hours per week: 12 Lectures and 6 hours practical
- 5. The registration for the preliminary year takes place in October, and the final exam. Is held once a year (June) in the date approved by the Faculty Council.
- 6. Grade Assessment:
- 7. Final Written Exam.60%
- 8. Final Practical Exam 40%
- 9. *< 60% failed
- 10. 60-64 passed, 65-79 good, 80-89 very good, >90% excellent
- 11. *Failed students can repeat the course (s) only once.

5. Program Contents

N	Code	Course Name	Lecturer
1	2052	Phycology, Physiology of algae, physiology of fungi, virology	Prof. Dr. Atef Abo-Shady Dr. Rania El-Shenoudy Dr. Saida Amer Dr. Samia Shabana
2	2053	Fermentation, Immunology, Phytopathology, special fungi.	Prof. Dr. Omyma Awadalla Prof. Dr. Susan Assawah Prof. Dr. Nanis Allam Prof. Dr.Eman Abdel-Zaher
3	2054	General bacteriology, applied bacteriology, applied mycology, instrumental methods of microbiology, use of microorganisms in leather tanning	Prof. Dr. Wagih El-Shouny Prof. Dr. Essam Azab Prof. Dr. M. Yasser Bedaiwy Dr.Samia Shabana
4	2055	Biochemistry	Prof. Dr. Nasser Sewelam
5	1518	Biostatistics	Prof. Dr. Kamal Shaltout Dr. Mohamed Abdelmonsef

Course Name	Code	Contents

	No	
Phycology, Physiology of algae, physiology of fungi, virology	2052	The basic principles and core of what are algae and how they live, reproduce and cultivation How to identify algae of lakes, soils, streams and ponds as well as marine algae. Exploring the fundamental principles of fungal physiology especially spore germination, with reference to dormancy, constitutive dormancy, exogenous dormancy, enzyme complement and biosynthetic process during spore germination. Understand the feature, molecular structure, transmission and diagnosis of many of viral diseases.
Fermentation, Immunology, plant pathology, special fungi.	2053	Provide the students with the fundamental concepts of sucrose and lipid metabolism and related enzymes. Equipped the students with the basis of immunity to bacteria and fungi.Discuss the mechanism of immunology in tumor and viruses. Identify the defense systems in Plant.Develop the modern experimental approaches in biochemistry of fermentation, selection and preservation of microorganisms and production of useful materials. Classify the different group of fungi and give an account on it's hosts in different habitats. Explore the principles of plant pathology in terms of disease cycle, plant defense against pathogens and methods for controlling plant diseases.
General bacteriology, applied bacteriology, applied mycology, instrumental methods of microbiology, use of microorganisms in leather tanning	2054	Teach students the modern experimental approaches in bacteriology that reflect the microbial diversity and evolution, in addition to modern techniques used for classification and diagnosis of bacteria. Provide students with the fundamental concepts and principles of microbial mutation basis, polymerase chain reaction, DNA southern blotting, RNA blotting, Western blotting, microbial genes isolation, cloning and expression. In addition to, natural antimicrobial compounds and assessment methods. Learn about Leather industrial tanning process and the roles of microorganisms in this industry. Also, the applications of microbial enzymes in leather treatments. Use of agriculture waste materials for cultivation of edible mushroom and the possible means for biodegradation of colored effluents, in addition to the nature of water pollution with

		microorganisms.					
Biochemistry	2055	Growth rhythms, decomposers of leaves, Effect of the toxic environment on microbial growth, The role of cyanobacteria in nitrogen fixation					
Biostatistics	1518	Statistical definitions, sampling of attributes, distributions (Normal, Binomial, Poisson), and tests of significance, Part two: Analysis of variance, experimental designs, association between variables, curve fitting and the method of least square, multiple and partial correlation and regressions, and analysis of time series.					

Program coordinator:

Prof. Dr.: Alaa Abou-Zeid

Head of Department:

Prof. Dr.: Alaa Abou-Zeid

Date: 08/2014

12. Microbiology Diploma program matrix

		Diploma program Microbiology matrix														
Course Title	Cours e code	Knowledge and Understanding			Intellectual skills			Professional skills			General skills					
	code	A 1	A 2	A 3	A 4	B 1	B 2	B 3	B 4	C 1	C 2	C 3	C 4	D 1	D 2	D 3
Algae, Physiology of Algae, Physiology of fungi	2052	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Biochemistr y of fermentatio n, Immunolog y, Plant pathology and Special fungi	2053				٧	٧			٧	٧		٧			٧	
General Bacteriology , Applied Bacteriology , Applied Mycology, Methodolog y and Instruments used in microbiolog y and Tanning of leather	2054	V			V	V			V			V	V	V		٧

Coordinator and Head of Department: Prof. Dr.: Alaa Mostafa Abou-Zeid

Title: Algae, Physiology of Algae, Physiology of fungi	Code: 2052
Coordinator	Prof. Atef Abo Shady
Other Staff	Prof. Saida Amer
	Dr. Samia Shabana
	Dr. Rania El-Shenoudy
Course Delivery	1 st semester: 14 x 3h lectures
	14 x 4h practical
	2 nd semester: 14 x 1 lectures
	14 x 2 practical
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

- The basic principles and core of what are algae and how they live, reproduce and cultivation How to identify algae of lakes, soils, streams and ponds as well as marine algae. Exploring the fundamental principles of fungal physiology especially spore germination, with reference to dormancy, constitutive dormancy, exogenous dormancy, enzyme complement and biosynthetic process during spore germination. Understand the feature, molecular structure, transmission and diagnosis of many of viral diseases.

Intended learning outcomes of course (ILOs)

a- Knowledge and understanding:

By the end of the Diploma course the graduate must be able to :-

- A.1- Identify the Characteristics of algae.
- A.2- recognizes the essential enzymes required for growth and metabolism.
- A.3. List the role of Algae in microbiological activities and in water quality.
- A.4 Identify the structure of some diseased viruses plants changes.
- A5- List the symptoms of viral infection and human diseases and diagnosis of them
- A6 Recognize the different methods for Viruses Prevention and its control

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B5. analyze microbiological information from a variety of sources
- B6. Categorize the principles, underlying fungi metabolism and different nutrients metabolic regulatory circuits.
- B7. Explain the basis of fungi transformation process.
- B8. Demonstrate the principles of fungal physiology in a manner appropriate to their programme of study.
- B9. Illustrate using algae as biomarkers and indicators for water pollution.
- B10. distinguish the effect of algae on our life
- B7. Differentiate between the different symptoms of plant virus infection.
- B8. Illustrate the method of transmission of different types of hepatitis and HIV.
- B9. Critically evaluates and discusses the primary literature and topics in virology.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C5. Differentiate between the different groups of fungi and algae under microscope
- C6. Determine pathways of some essential products produced by fungi and algae
- C7. Use different methods for fungi laboratory manipulation.
- C8. manage strategy for fungi metabolism and transformation processes by fungi
- C9. use statistics to evaluate the efficiency of different methods used in that field
- C10. carry out laboratory work

d- General and transferable skills

By the end of the Diploma course the graduate must be able to :-

- D1.prepare of a research proposal
- D2.prosecute of research by applications of laboratory or field techniques
- D3.Prepare complete and clear scientific report
- D4.Draw the micro-organisms
- D5. Possess good project management and business skills.

Contents

Physiology of algae (1 hour / week)						
Week	Торіс					

1	Modes of nutrition in different algal phyla					
2	Reserve food					
3	Chloroplast structure and supramolecular organization of photosynthetic membranes					
4	Photosynthesis					
5	Photorespiration (Significant differences between unicellular algae, multicellular algae and higher plants					
6	Effect of light quality on carbon metabolism					
7	Assimilation of organic compounds (Acetate and glucose)					
8	Effect of nitrogen and phosphorus nutrition on growth, pigments and photosynthesis					
9	Biosorption of heavy metals and its use in purification of waste water.					
10	Oxidative stress					
11	Antioxidative defenses in some algae (antioxidant enzymes and molecules).					
12	Antimicrobial production from micro algae.					
13	Antimicrobial production from seaweeds					
14	Exopolysaccharides and its role					
15	Spirulina and its medical uses					
	Physiology of Fungi (1 hour / week)					
Week	Торіс					
1	Spore germination of fungi					
2	Dormancy (exogenous dormancy)					
3	Constitutive dormancy					
4	Breaking dormancy					
5	Stimulatory substances (maturation)					
6	Heat shock proteins in fungi					
7	Cellular effects of heat shock proteins					

8	Heat shock and development
9	Chitosan and fungi
10	Production of chitosan by fungi
11	Some applications of chitosan
12	Fungicides
13	Systemic fungicides
14	Selective Topic
15	Uptake and translocation and mechanism of systemic fungicides action.
	Phycology (1 hour / week)
Week	Topic
1	What are algae
2	Algae and the food they make
3	Algae of streams and rivers
4	Methods for studying phytoplanktons
5	How algae grow and reproduce
6	Cell division in diatoms
7	Reproduction units in algae
8	Algae of Lakes and ponds
9	Effect of light on the distribution of algae in Lakes and ponds
10	Effect of nutrients on algae distribution
11	Toxic algae
12	How to determine the toxins in water
13	Algae as indicators for water quality and pollution
14	Genetic engineering of algae
15	Assessment
16	Transformation of algae

	Virology (1 hour / week)						
Week	Торіс						
1	General features of virus						
2	Factor affecting on transmission of plant virus						
3	External symptoms of plant virus						
4	Internal symptoms of plant virus						
5	Different method of transmission of plant virus						
6	Acquire resist of plant virus						
7	Hepatitis A: structure, epidemiology diagnosis, prevention & care						
8	Hepatitis B: structure, epidemiology diagnosis, prevention & care						
9	Hepatitis C: structure, epidemiology diagnosis, prevention & care						
10	Interferon						
11	Human immunodeficiency virus(HIV)						
12	Causes and type of cancer						
13	Development of cancer cell						

Practical

	Algae and physiology of algae (2 hours / week)				
Week	Topic				
1	Isolation of algae from different sources				
2	Purification of isolated algae 1				
3	Purification of isolated algae 2				
4	Different methods of measurement of algal growth				
5	Measurement of growth curve by OD				
6	Measurement of growth using biomass productivity				
7	Studying the effect of carbon source on algal growth				

8	Field trip for collection of seaweed
9	Studying the effect of organic compounds on algal growth
10	Effect of nitrogen and phosphorus nutrition on growth.
11	Oxidative stress caused by H2O2
12	Antimicrobial activity by some of the isolated algae
13	Antimicrobial production from seaweeds
14	Assessment
	Physiology of Fungi (2 hours / week)
Week	Topic
1	Crowded-plate method
2	direct-soil- inoculation method (specific antibiotic method)
3	Dilution culture method
4	Streak method
5	Assay of antibiotics
6	Chemical assay
7	Biological assay
8	Cylinder-plate method
9	Turbidimetric method
10	All-or none growth method
11	Penicilin
12	Seperation and purification of penicillin:
13	Properties of penicillin
14	Assessment
t	ı

Teaching, and learning methods:

- 4.1.Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.

- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	Р, Т	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

	_	٠.		_		~+	
J). J)(ırs	$\boldsymbol{\epsilon}$	m	101	$_{\mu}$

Essential	hooks	(text	hooks)
Loociiliai	DUUKS	ווכאנ	DUUKSI

- Fungal Physiology, Second Edition by David H. Griffin, Wiley-Liss, A John Wiley & Sons, Inc, Publication, New York (1994)
- Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine
 Edited by Tkacz, Jan S.; Lange, Lene
 Springer 2004

Recommended books

- Fungal Genomics Applied Mycology and Biotechnology volume 4
 Edited by D K Arora and G G Khachatourians
 Elsevier February 2004.
 - Algal Ecology, Freshwater benthic ecosystems, Edited by Stevenson, R.J., Bothwell, M.L., Lowe R.L. Academic Press (1996)
 - Algal culturing techniques, Edit Anderson, R.A., Elsivier (2005)

Virology of flowering plants W. A. Stevens, B. Sc Ph.D.

Lecture in botany, royal Holloway collage, university of London, Blackie

Glasgow and London distributed in the USA by Chapman and Hall, New York 2000

Web sites

- http://www.who.int/vaccines/intermediate/hepatitis. Accessed February 15, 2006
- http://www.who.int/inffs/en/fact 164.html. Accessed February 15, 2006
- http://www.google.de/
- www. Algaebase.com

Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator: Head of Department

ال د. علاء أبو زيد أد. عاطف أبو شادي

Course Contents - Course ILOs Matrix

Teaching and learning methods / ILOs matrix

Course																											
Contents/ Theoritical	Practical			owle ders							Int	ellec	tual						Prac	tical				Trai	nferr	able	
Physiology of alg	gae	A 1	A 2	A 3	A 4	A 5	A 6	B 1	B 2	B 3	В 4	B 5	В 6	B 7	B 8	B 9	C 1	C 2	C 3	C 4	C 5	C 6	D 1	D 2	D 3	D 4	D 5
Modes of nutrition in different algal phyla		٧	٧				٧	٧	٧	٧				٧											٧	٧	٧
	Isolation of algae from different sources																٧	٧	٧	٧							
Reserve food		٧	٧				٧			٧				٧												٧	٧
	Purification of isolated algae 1																٧		٧	٧	٧	٧					
Chloroplast structure and supramolecular organization of photosynthetic membranes				٧	V					V	V												٧	٧	٧	٧	٧
	Purification																٧	٧	٧	٧	٧	٧					

	of isolated algae 2																			
Photosynthesis	uigue 2	٧				٧	٧	٧											٧	٧
	Different methods of measureme nt of algal growth											٧	٧		٧	٧	٧			
Photorespiration (Significant differences between unicellular algae, multicellular algae and higher plants						٧	٧												٧	٧
	Measureme nt of growth curve by OD												٧	٧		٧	٧			
Effect of light quality on carbon metabolism		٧	٧				٧	٧											٧	٧
	Measureme nt of growth using											٧	٧			٧	٧			

	biomass productivit y																					
Assimilation of organic compounds (Acetate and glucose)		٧			٧	٧						٧	٧						٧	٧		
	Studying the effect of carbon source on algal growth													٧	٧	٧	٧	٧				
Effect of nitrogen and phosphorus nutrition on growth, pigments and photosynthesis			٧	٧	٧				٧	٧									٧			
	Field trip for collection of seaweed													٧	٧							
Biosorption of heavy metals and its use in purification of waste water.							٧	٧											٧			

Oxidative	Studying the effect of organic compounds on algal growth																	٧	٧	٧	٧	٧					
stress						٧	٧	٧					٧	٧	٧	٧								٧	٧	٧	٧
	Effect of nitrogen and phosphorus nutrition on growth.																٧	٧	٧								
Antioxidative defenses in some algae (antioxidant enzymes and molecules).		٧	٧	٧	٧	٧	٧							٧	٧	٧											
	Oxidative stress caused by H2O2															٧	٧		٧	٧	٧						
Antimicrobial production from micro algae.		٧	٧	٧				٧	٧	٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧
	Antimicrobi al activity																	٧	٧	٧	٧	٧					

	by some of																										
	the isolated algae																										
Antimicrobial	J																										
production		٧	٧	٧				٧	٧	٧	٧	٧	٧	٧	٧					٧		٧	٧	٧	٧	٧	٧
from seaweeds																											
	Antimicrobi																										
	al																										
	production																٧		٧				٧				
	from																										
	seaweeds																										
Assessment		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧
	Assessment																٧	٧	٧	٧	٧	٧					
Phycology																											
What are algae	-	٧	٧						٧	٧	٧	٧	٧														٧
Algae and the		V	V						V					v	٧	V										V	V
food they make	_	٧	V						V					V	V	V										٧	V
Algae of																											
streams and	-	٧					٧					٧	٧	٧												٧	٧
rivers																											
Methods for																											
studying	-	٧					٧					٧	٧	٧												٧	٧
phytoplanktons																											
How algae																											
grow and	-	٧	٧	٧	٧	٧	٧					٧	٧	٧	٧	٧										٧	٧
reproduce																											
Cell division in									V	٧	٧	٧	V	٧	٧	٧							٧	٧	٧	٧	٧
diatoms	-								V	V	V	V	ı v	V	V	V							V	V	V	V	V
Reproduction	-	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧											٧	٧	٧	٧	٧
units in algae																											

Algae of Lakes																										
and ponds	-	٧	٧	٧						٧	٧	٧										٧	٧	٧	٧	٧
Effect of light																										
on the																										
distribution of	-	٧	٧	٧						٧	٧	٧	٧	٧	٧	٧						٧				٧
algae in Lakes																										
and ponds																										
Effect of																										
nutrients on	_	v	v	V						v	v		٧	v								٧	٧	٧	٧	v
algae		•	•	•						•	•			•								•	•	•	•	
distribution																										
Toxic algae	-	٧	٧	٧									٧	٧								٧				٧
How to																										
determine the	-	٧	٧	٧									٧	٧								٧	٧	٧	٧	٧
toxins in water																										
Algae as																										
indicators for	_	v	v	V								v	٧	v								٧				V
water quality													-									-				-
and pollution						_																				
Assessment	-				٧	٧	٧	٧	٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧
Physiology of Fu	ngi																									
Spore																										
germination of		٧	٧				٧	٧	٧	٧				٧										٧	٧	٧
fungi																										
	Crowded-																									
	plate																٧	٧	٧	٧						
	method																									
Dormancy		١.	١.							١.				١.												
(exogenous		٧	٧				٧			٧				٧											٧	٧
dormancy)																										

	direct-soil- inoculation method (specific antibiotic method)														٧		٧	٧	٧	٧					
Constitutive dormancy	methody			٧	٧					٧	٧										٧	٧	٧	٧	٧
	Dilution culture method														٧	٧	٧	٧	٧	٧					
Breaking dormancy		٧						٧	٧	٧														٧	٧
	Streak method														٧	٧		٧	٧	٧					
Stimulatory substances (maturation)								٧	٧															٧	٧
	Assay of antibiotics															٧	٧		٧	٧					
Heat shock proteins in fungi		٧	٧						٧	٧														٧	٧
	Chemical assay														٧	٧			٧	٧					
Cellular effects of heat shock proteins		٧				٧	٧						٧	٧							٧	٧			
	Biological assay															٧	٧	٧	٧	٧					

			l		1		I	l	1		1	1	1							1							
Heat shock and				٧	٧	٧					٧	V											٧				
development																											
	Cylinder-																										
	plate																	٧	٧								
	method																										
Chitosan and									V	V													٧				
fungi									v	V													V				
	Turbidimetr																	,	,	,	,	,					
	ic method																	٧	٧	٧	٧	٧					
Production of																											
chitosan by						٧	V	v					v	٧	V	V								٧	٧	٧	٧
fungi						_	_							-	-									-	-	-	-
15.118	All-or none																										
	growth																٧	v	V								
	method																	•									
Some	memou																										
applications of		٧	v	V	٧	V	v							٧	v	٧											
chitosan		V	\ \	V	V	V	V							v	V	v											
CIIICOSaii	Daniailia															-1	-1		-1	-,	-1						
	Penicilin															٧	٧		٧	٧	٧						
Fungicides		٧	٧	٧				٧	٧	٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧
	Seperation																										
	and																										
	purification																	٧	٧	٧	٧	٧					
	of																										
	penicillin:																										
Systemic		V	v	V				V	V	٧	v	v	V	٧	V					v		V	٧	٧	٧	٧	V
fungicides		V	V	V				V	v	V	v	v	v	V	V					v		V	V	V	V	v	V
	Properties																	٧	.,	-,/	-/	./					
	of penicillin																	V	٧	٧	٧	٧					
Selective Topic		٧	٧	٧				٧	٧	٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧

	Assessment																٧	٧	٧	٧	٧					
Virology																										
General features of virus		٧	٧					٧	٧	٧						٧								٧	٧	٧
Factor affecting on transmission of plant virus		٧	٧					٧	٧	٧	٧	٧	٧			٧						٧	٧	٧	٧	٧
External symptoms of plant virus		٧	٧					٧	٧	٧	٧	٧	٧			٧							٧			٧
Internal symptoms of plant virus		٧	٧	٧	٧	٧						٧	٧			٧							٧			٧
Different method of transmission of plant virus		٧	٧	٧	٧	٧						٧	٧			٧						٧	٧	٧	٧	٧
Acquire resist of plant virus		٧	٧					٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧
Hepatitis A: structure, epidemiology		٧	٧	٧	٧	٧	٧	٧				٧	٧									٧	٧	٧	٧	٧

diagnosis, prevention & care																					
Hepatitis B: structure, epidemiology diagnosis, prevention & care	V	٧					٧	٧	٧	٧	٧									٧	٧
Hepatitis C: structure, epidemiology diagnosis, prevention & care	٧	٧					٧				٧									٧	٧
Interferon	√	٧					٧	٧		٧	٧						٧			٧	٧
Human immunodeficie ncy virus(HIV)	٧	٧					٧	٧	٧	٧	٧						٧			٧	٧
Causes and type of cancer	٧	٧	٧						٧	٧	٧	٧	٧				٧				٧
Development of cancer cell	٧	٧		٧	٧	٧	٧	٧					٧	٧			٧	٧	٧	٧	٧
Assessment																					

Course contents		l	<			I		ŀ)		T	
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧					
Supplementary and library research.										٧	٧	٧
Practical sections.								٧	٧			
external visits and student activities.										٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs matrix:

Course contents		ŀ	<			I		F)		T	
	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧
Practical exam								٧	٧	٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Title: Biochemistry of fermentation,	Code: 2053
Immunology, Plant pathology and Special	
fungi	
Coordinator	Prof. Dr. Omyma Awadalla
Other Staff	Prof. Dr. Susan Assawah
	Dr.Nanis Allam
	Dr. Eman Abdel Zaher
Course Delivery	1 st semester: 14 x 2h lectures
	14 x 4h practical
	2 nd semester: 14 x 2 lectures
	14 x 4 practical
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

Provide the students with the fundamental concepts of sucrose and lipid metabolism and related enzymes. Equipped the students with the basis of immunity to bacteria and fungi.Discuss the mechanism of immunology in tumor and viruses.

Identify the defense systems in Plant.Develop the modern experimental approaches in biochemistry of fermentation, selection and preservation of microorganisms and production of useful materials. Classify the different group of fungi and give an account on it's hosts in different habitats. Explore the principles of plant pathology in terms of disease cycle, plant defense against pathogens and methods for controlling plant diseases.

Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the Diploma course the graduate must be able to :-

- A1. Define the lipid and protein isolation and purification also, the purification scheme table of enzymes
- A2. Describe mechanisms of microbial fatty acids biosynthetic enzyme (FAS), enzyme catalysis.
- A3. Explain the Sucrose and lipid metabolism.
- A4. Identify the role of plant immunology in production of human vaccines.
- A5. Discuss the interaction between the pathogen and host.
- A6. Explain the life cycle of certain selected plant diseases.

b- Intellectual skills

By the end of the Diploma course the graduate must be able to :-

- B1. Demonstrate purification of enzymes and proteins
- B2. Elucidate the enzyme kinetic mechanism
- B3. Differentiate between the nature of fatty acids biosynthesis in bacteria

and fungi.

- B4. Critically evaluate and discuss the primary literature and topics in particular areas nutrient metabolic different enzymes pathways.
- B5. Elucidate new approach in vaccines production and uses and Immunological techniques.
- B6. Select the appropriate organism and conditions for best fermentation and product.
- B7. Analyze different fungal diseases and demonstrates medicines which could be produced by fungi.
- B8. Knowledged about how the pathogen causes disease to plant.
- B9. selects the appropriate methods controlling diseases caused to plants

c- Professional and practical skills

By the end of the Diploma course the graduate must be able to :-

- C9. Use the proper and more suitable approaches for lipid, protein and enzyme isolation and purifications.
- C10. Manipulate and handle the different steps in enzyme kinetics mechanisms elucidation.
- C11. Practice the best condition for fermentation and vaccines production.
- C12. Explain the principles of and limitation of practical techniques
- C13. Use basic laboratory equipment safely
- C14. Identify and classify common soil fungi.
- C15. Examine the pathogens in terms of how they penetrate the host plant and cause the infection.
- C16. Explain the method of pathogen infection in reference to production of enzymes, toxins, growth regulators, and polysaccharides.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

- D1. Prepare complete and clear scientific reports.
- D2. Mention scientific systems and tools effectively
- D3. Possess good project management and business skills.
- D4. Identify personal learning needs

Contents

	1.Biochemistry of fermentation (1 hour / week)
Week	Topic
1	Fementers , history and design of fermenters.
2	Batch fermentation, fed batch fermentation.
3	Continuous fermentation and scale up of fermentation.

4	Methods of culture preservations, criteria for selection of microorganisms for fermentation.
5	Maintenance of cultures.
6	Production of microbial products, methods of strain improvement
7	Recent approaches in microbial production of human recombinant insulin and hepatitis B vaccines.
8	Alcohol production, production of malt beverages.
9	Recent approaches in microbial production of organic acids
10	Recent approaches in microbial production of antibiotics.
11	Recent approaches in microbial production of enzymes.
12	Recent approaches in microbial production of amino acids.
13	Steroid biotransformation.
14	Purification and immobilization of enzymes.
	2- Immunoloy (1 hour / week)
Week	Topic
1	Immunity to bacteria and fungi (avoidance of immune system).
2	Tumor immunology (mechanisms of immunity).
3	Tumor immunology (avoidance of immune system).
4	Viral immunology (mechanisms of immunity).
5	Viral immunology (avoidance of immune system).
6	Plant immunology (introduction, different plant defenses).
7	Round up discussion on the topics of the course.
8	Plant immunology (uses of plant immunology in production of human vaccines,).
9	Vaccination (introduction, traditional production of vaccines).
10	Vaccination (new approach in vaccines production and uses).
11	Immunological techniques (ELISA).
12	Immunological techniques (PCR).

13	Round up discussion on the topics of the course.
14	Assessment
	3. special fungi (1 hour / week)
Week	Topic
1	Introduction to fungal symbionts – lichens
2	Mycorrhizae – Ectomycorrhizae.
3	Endomycorrhizae – Non septate and septate fungi.
4	Fungi as insect symbionts.
5	Spore dispersal (by air, water or animals).
6	Fungal ecology (Coprophilous fungi). Fungal ecology (Coprophilous fungi).
7	Amphibious fungi in streams.
8	Aero-aquatic fungi in ponds.
9	Human fungal diseases — cutaneous mycosis.
10	Subcutaneous mycosis.
11	Systemic or deep mycosis — fungi associated with immunocompromised patients
12	Drugs from fungi – Penicillin – cephalosporin.
13	Griseofulvin.
14	Ergot alkaloids.
15	Assessment
	4. Phytopathology (1 hour / week)
Week	Topic
1	How pathogen attacks plant.
2	Mechanical forces exerted by pathogens on host tissues.
3	Chemical weapons of pathogens.
4	Microbial toxins in plant diseases.

5	Microbial toxins in plant diseases.
6	Growth regulators in plant diseases.
7	Polysaccharides in plant diseases.
8	How plants defend themselves against pathogens.
9	Structural defenses.
10	Biochemical defenses.
11	Study some plant diseases
12	Study some plant diseases.
13	Control of plant diseases.
14	Assessment

- Practical course

a-special fungi (2 hour / week):-

- 1-Types of cultures of fungi.
- 2- Types of slide preparation.
- 3- Staining
- 4- Methods of purification of fungi.
- 5- Methods of biochemical studies of fungi.
- 6- Methods of isolation of fungi.
- 7- Preservation of fungi .
- 8- Identification of fungi .

b-plant pathology (2 hour / week)

- 1- Methods of studing plant diseases .
- 2- Studing the characters of plant pathogen .
- 3- Study the stages of the development of disease on plant .
- 4- Methods of isolation and purification of pathogen from diseased plants

Teaching, and learning methods:

- 4.1. Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	Р, Т	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

- Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine
 Edited by Tkacz, Jan S.; Lange, Lene
 Springer 2004
- Dubey and Mahishwari (2006): A Textbook of Microbiology. S.Chand & Company LTD Madigan and Martinko (2006): Brook biology of Microorganisms. 11th edition, Pearson, Prentice Hall.
- Fundamentals of fungi, 2nd ed., Elizabeth Moor-Landecker.
- Fungal Physiology, Second Edition by David H. Griffin, Wiley-Liss, A John Wiley & Sons, Inc, Publication, New York (1994)
- Lecture in botany, royal Holloway collage, university of London, Blackie Glasgow and London distributed in the USA by Chapman and Hall, New York 2000.
- Madigan, Martinko and Parker (2003): Biology of Microorganisms. 10th edition, Pearson, Prentice Hall.
- Methods in Microbiology, C. Booth. Zoosporic fungi in teaching and research,

M.S. Fuller and A. Jaworski.

Recommended books

- Plant pathogens, R. Singh. Virology of flowering plants W. A. Stevens, B. Sc Ph.D. Plant pathology (1969), G. Agrios.
- Fungal Genomics Applied Mycology and Biotechnology volume 4 Edited by D K Arora and G G Khachatourians Elsevier February 2004

Web sites

http://www.google.com

http://www.cedarville.edu/academics/sciencemath/silvius/3520/352sites.html

www.safarix.com

www.researchnavigator.com

www.prenhall.com/madigan

http://www.who.int/vaccines/intermediate/hepatitis

http://www.who.int/inffs/en/fact 164.html

Facilities required for teaching and learning

- -Well prepared laboratory, Lyophilizer, Fermenters, PCR, Cooling ultra centrifuge, Rotatory shaker, Selective culture media, chemicals and kits to do all the experiments required for the course. Culture collection of fungi
- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

أ.د/ أميمة عوض الله

Head of Department:

أ.د/ علاء أبوزيد

Course Contents - Course ILOs Matrix

Course contents		Knowlodge and understand ing		intellectual			pı	ract	ical	S	Trasferable					
Two hours/week	Labs	A1	A2	В 1	B 2	B 3	C 1	C2	C3	C4	D:	D 2	D 3	D 4		
				1		,	1					2	,	-		
Introduction to		٧														
fungal symbionts – lichens																
	Types of						٧	٧				٧				
	cultures of fungi .															
	or rungr.															
Mycorrhizae –		٧														
Ectomycorrhizae																
	Types of						٧		٧							
	cultures															
	of fungi .															
Endomycorrhiza		٧														
e - Non septate and septate																
fungi.																
	Types of							٧				٧				
	slide preparati															
	on															
Fungi as insect		٧														
symbionts.																
	Types of						٧	٧	٧			٧				
	slide preparati															
	on															
Spore dispersal		٧														
(by air, water or																

animals).										
	Staining				٧	٧			٧	
	Stairing				V	٧			V	
Fungal ecology		٧								
(Coprophilous										
fungi). Fungal										
ecology (Coprophilous										
fungi).										
	Ctaining				٧	٧			٧	
	Staining				V	٧			٧	
Amphibious		٧								
fungi in streams.										
	Methods					٧	٧			
	of					•	٠			
	purificatio									
	n of fungi									
How plants		٧								
defend										
themselves										
against pathogens.										
pathogens.										
	Methods					٧	٧			
	of biochemic									
	al studies									
	of fungi .									
Human fungal		٧								
diseases –		"								
cutaneous										
mycosis.										
	Methods					٧	٧	٧	٧	
	of									
	biochemic									
	al studies									
	of fungi .									

	ı		1		1	1	ı	1	1	l		
Subcutaneous		٧										
mycosis												
	Methods						٧	٧	٧		٧	
	of						•	•	•		,	
	isolation											
	of fungi											
Systemic or deep		٧										
mycosis – fungi												
associated with												
immunocompro												
mised patients												
miseu patients												
	Methods						٧					
	of											
	isolation											
	of fungi											
	0 · · · · · · · · · · · · · · ·											
Drugs from fungi		٧										
- Penicillin -												
cephalosporin.												
	Preservati						٧	٧	٧		٧	
	on of											
	fungi											
Griseofulvin.		٧										
driscordiviii.		*										
	Identificat							٧	٧		٧	
	ion of											
	fungi .											
Ergot alkaloids.		٧										
_												
	Identificat						٧	٧			٧	
	ion of											
	fungi .											
How pathogen			٧	٧	٧	٧						
attacks plant.			1	•		-						
accooks plants												
	. Methods								٧			
			1									

	of studing plant diseases .								
Mechanical forces exerted by pathogens on host tissues.		٧		٧	٧				
	Methods of studing plant diseases .						٧		
Chemical weapons of pathogens.		٧	٧		٧				
	Methods of studing plant diseases .						٧		
Microbial toxins in plant diseases.		٧	٧	٧					
	Studing the characters of plant pathogen						٧		
Microbial toxins in plant diseases.		٧		٧					
	Studing the characters of plant pathogen						٧		

Growth		٧		٧	٧					
regulators in				-	•					
plant diseases.										
,										
	Studing						٧			
	the									
	characters									
	of plant									
	pathogen									
Polysaccharides		٧	٧		٧					
in plant										
diseases.										
	Study the						٧			
	stages of									
	the									
	developm									
	ent of									
	disease on									
	plant									
How plants		٧		٧						
defend										
themselves										
against										
pathogens.										
	C: 1 :1									
	Study the						٧			
	stages of									
	the									
	developm									
	ent of disease on									
	plant									
	piarit									
Structural		٧		٧						
defenses.										
	C+d+l									- 1
	Study the						٧	٧		٧
	stages of									
	the									
	developm ent of									
	disease on									
	plant									
	ριατίτ									

Biochemical defenses.		٧		٧	٧					
	Methods of isolation and purificatio n of pathogen from diseased						٧		٧	٧
Study some plant diseases		٧	٧		٧					
	Methods of isolation and purificatio n of pathogen from diseased						٧	٧		٧
Study some plant diseases		٧	٧	٧						
	Methods of isolation and purificatio n of pathogen from diseased						٧	٧		٧
Control of plant diseases.		٧		٧	٧					
	Revision						٧	٧	٧	

Teaching and learning methods / ILOs matrix:

Course contents		ı	<			I		ŀ)	Т			
		A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3	
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧						
Supplementary and library research.										٧	٧	٧	
Practical sections.								٧	٧				
external visits and student activities.										٧	٧	٧	

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs

matrix:

Course contents		ŀ	<			I		ŀ)	Т			
Course contents	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3	
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧	
Practical exam								٧	٧	٧	٧	٧	

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Title: General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather	Code: 2054
Coordinator	Prof. Wagih El-Shouny
Other Staff	Prof. Wagih El-Shouny Prof. M. Yasser Bedaiwy Dr. Samia Shabana
Course Delivery	1st semester: 14 x 2h lectures 14 x 4h practical 2nd semester: 14 x 3 lectures 14 x 6 practical
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

-Teach students the modern experimental approaches in bacteriology that reflect the microbial diversity and evolution, in addition to modern techniques used for classification and diagnosis of bacteria. Provide students with the fundamental concepts and principles of microbial mutation basis, polymerase chain reaction, DNA southern blotting, RNA blotting, Western blotting, microbial genes isolation, cloning and expression. In addition to, natural antimicrobial compounds and assessment methods. Learn about Leather industrial tanning process and the roles of microorganisms in this industry. Also, the applications of microbial enzymes in leather treatments. Use of agriculture waste materials for cultivation of edible mushroom and the possible means for biodegradation of colored effluents, in addition to the nature of water pollution with microorganisms.

Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the Diploma course the graduate must be able to :-

- A1.Define the modern experimental approaches in Microbiology that reflect the diversity on microorganisms and its applications in life. Furthermore, to teach the students the modern software programs for microbiology and evolution
- A2. Recognize approaches used in microbial genes: isolation, cloning,

- expression and antimicrobial drugs
- A3.Identify microbial mutation, polymerase reaction, protein, RNA, DNA blotting.
- A4.Describe mechanisms of microbial leather treatments and to provide the students with knowledge about microbial enzymes used in that industry

b- Intellectual skills

By the end of the Diploma course the graduate must be able to :-

- B1. Critically evaluate the information about the different methods and materials used in microbiology research from a variety of sources
- B2. assess the role of microorganism in leather tanning process
- B3. Use lingocellulosic residue as a feed and the principles underlying the use of enzymes produced by white-rot fungi for effluent degradation.
- B4. plan, execute and present an independent piece of work (e.g. a project) within a supported framework
- B5. Execute basic manipulation of biological data (including some statistical analysis if appropriate), and to work safely in a laboratory environment

c- Professional and practical skills

By the end of the Diploma course the graduate must be able to :-

- C1. Carry out, handle and analyze data derived from the morphological, biochemical, immunological and molecular data to produce bacterial classification trees.
- C2. Use different methods of microbial leather tanning process.
- C3. Isolate and propagate microbial mutants in pure form and differentiate between them. Manipulate the microbial genes in vitro
- C4. Prepare the substrate and spawn and adjust the proper conditions of solid state fermentation for cultivation of edible mushroom
- C5. Identify the pathogenic microorganisms transmitted by water, ensuring the safety of drinking water.
- C6. Describe morphological, physiological and biochemical criteria as sources of taxonomic information and their use in bacteria classification

d- General and transferable skills

By the end of the Diploma course the graduate must be able to :-

- D1. Work safely, competently and effectively in the laboratory
- D2. Independent learning ability required for continuing professional development.
- D3. Able to prepare complete and clean scientific report
- D4. Ability to work with others, use and manage ideas and information

Contents

1-General bacteriology (1 hour / week)

Week	Торіс
1	Microbial phylogeny derived from ribosomal RNA sequences
2	Microbial taxonomy and its relationship to phylogeny
3	Chemotaxonomy (Genomic DNA:DNA hybridization, ribotyping, multilocus sequencing type, and lipid profiling)
4	The species concept in microbiology. Nomenclature and Bergey's Manual
5	Isolation of pathogenic bacteria from clinical specimens (Growth media, blood cultures, urine cultures and fecal cultures)
6	Wounds and Abscesses. Genital specimens and cultures of anaerobes
7	Growth dependent identification methods. Clinical diagnosis
8	Midterm examination
9	Antimicrobial drug susceptibility testing, Safety in Microbiology laboratory, Biological containment and laboratory biosafety levels
10	Immunology and clinical diagnostic methods
11	Immunoassays for infectious diseases
12	Polyclonal and Monoclonal Antibodies, diagnostic and therapeutic uses
13	In Vitro Antigen-Antibody reactions, agglutination and uses in clinical and research laboratories
14	Fluorescent antibodies, Enzyme-linked immunosorbent assay and radioimmunoassay, sensitivity, and diagnostic and research laboratories applications
15	Immunoblot procedure and identification of specific proteins associated with specific pathogen
	Recent Molecular diagnostic methods
	Round up discussion on the topics of the course
Week	Торіс
	2-Applied Bacteriology (1 hour / week)
1	Microbiolgical control of plant pathogens

2	Bacteria in food
3	Biomining (Bioleaching)
4	Water treatment
5	Sewage treatment
6	Biological washing powders
7	Silage making and single-cell protein
8	Bioremediation
9	Biodegradation xenobiotics
10	Petroleum Biodegradation
11	Natural gases
12	Microbial plastics
13	Discussion
14	Assessment
	3-Applied Mycology (1 hour / week
/eek	Торіс
1	Cultivation of edible mushroom: preparation

()

Week	Торіс
1	Cultivation of edible mushroom: preparation of substrate, spawn and methods of spawning
2	Conditions of solid state fermentation.
3	Biodegradation of colored effluents: enzymes responsible for effluents degradation
4	culture condition and microorganisms for effluents degradation
5	Upgrading of lignocellulosic residue as feed: nutritive value of agricultural waste
6	Digestibility of straw and treatment of straw with white-rot fungi.
7	Assignment
8	Water microbial pollution
9	Water Microbiology: pathogenic microorganisms transmitted by water,
10	Ensuring the safety of drinking water,

11	water pollution
12	water purification
13	Sewage-treatment.
14	Assessment
	4-Materials and Methods in microbiology (1 hour / week)
Week	Topic
1	Mutation, mutant detection, mutant selection and carcinogenicity testing.
2	Southern blotting technique,
3	polymerase chain reaction
4	Gene isolation and cloning
5	Gene Probes
6	Cloning vectors
7	Protein Blotting
8	Northern blotting
9	Western blotting
10	Gene expression
11	Expression vectors
12	Assignment
13	Application of genetic engineering
14	Antimicrobial drugs assessment
15	Antibacterial compounds
16	Antifungal compounds
	5-Leather Tanning By Microorganisms (1 hour / week)
1	Hydrolytic enzymes
Week	Topic

Microbial proteases

3 Microbial collagenases 4 Microbial gelatinases 5 Microbial Lipases 6 Leathers nature 7 Leather tanning process 8 Processing of leather during tanning preparation 9 Protection the processed leather against microbial invaders 10 Preservation of the processed leather against microbial invaders 11 Assignment Microbial problems associating with Leather processing during tanning 12 process at industrial level 13 New approaches for leather processing during tanning process

Practical course of general bacteriology (2 hour / week)

- a. Isolation of bacteria from different sources.
- b. Biochemical identification of isolated bacteria.
- c. Molecular identification of bacteria.

Open discussion

- d. Isolation of bacteria from different clinical samples.
- e. Determination of antimicrobial susceptibility of antibiotics against pathogenic bacteria.
- f. Immunological and serological studies of pathogenic bacteria.

Practical course of applied bacteriology (2 hour / week)

- 1- Isolation of bacteria from different food sources.
- 2- Isolation and enumeration of bacteria from water by filteration memberane method
- 3- Isolation of hyperaccumelator bacteria from polluted soil.
- 4- Extraction of lipase and protease enzymes from bacteria.
- 5- Determination of antagonistic activity of bacteria against plant pathogenic microorganisms.
- 6- Production of natural gases from bacteria.

Practical course of applied mycology (2 hour / week)

- 1-Pretreatment of substrate for fungal solid state fermentation (FSSF).
- 2- Different inoculum type in FSSF.
- 3- Effect of water content on fungal growth during FSSF.
- 4-PH requirement of fungal growth during FSSF.
- 5- Temperature variation and control during FSSF.
- 6- Different substrate.

14

7- Factors involved in the selection of a suitable substrate for the desired fungi to grow.

- 8- Factors affecting spawn preparation.
- 9- cultivation of edible mushroom.
- 10- Estimation of digestibility of fermented Lignocellulosics compound.
- 11- Decolorization of colored effluents.
- 12- Antimicrobial activity of some fungal pigment.
- 13- Production of amylase enzyme.
- 14- Production of protease enzyme.

Teaching, and learning methods:

- 4.1. Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	Р, Т	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

Microbiology: Bacteriology v. 2 (Blackwell Underground Clinical Vignettes) by Vikas Bhushan, Tao Le, and Vishal Pall (Paperback - 1 May 2005)

Recombinant DNA by Watson, J.D., Gilman, M., Witkowski, J. and Zoller, M. (1992), Scientific American Books distributed by W.H. Freeman and Company, New York, USA

Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine Edited by Tkacz, Jan S.; Lange, Lene Springer 2004 Advances in Fungal Biotechnology for Industry, Agriculture,

and Medicine Edited by Tkacz, Jan S.; Lange, Lene Springer 2004

Madigan and Martinko (2006): Brook biology of Microorganisms. 11th edition, Pearson, Prentice Hall.

Dubey and Mahishwari (2006): A Textbook of Microbiology. S. Chand & Company LTD

Recommended books

Molecular Genetics of Bacteria (Hardcover) by Larry Snyder, Wendy Champness 2002

Modern Microbial Genetics by Uldis N. Streips and Ronald E. Yasbin (Hardcover - Feb 7, 2002)

An Overview on Toxigenic Fungi and Mycotoxins in Europe Edited bν Antonio Logrieco and Angelo Visconti Springer 2004

Fungal Genomics - Applied Mycology and Biotechnology volume 4 Edited by D K Aurora and G G Khachatourians Elsevier February 2004

Madigan, Martinko and Parker (2003): Biology of Microorganisms. 10th edition, Pearson, Prentice Hall.

Madigan, Martinko and Parker (2000): Biology of Microorganisms. 9th edition, Pearson, Prentice Hall.

Dubey and Mahishwari (2004): A Textbook of Microbiology. S.Chand & Company LTD Dubey and Mahishwari (2003): A Textbook of Microbiology. S.Chand & Company LTD

Web sites

http://www.accessexcellence.org/RC/genetics.htm

http://www.oxfordjournals.org

http://www.cedarville.edu/academics/sciencemath/silvius/3520/352sites.html

www.safarix.com

www.researchnavigator.com

Facilities required for teaching and learning

- Well prepared laboratory, Lyopholizer, ELISA reader, PCR, Fluorescent Microscope,
- Selective culture media, chemicals and kits to examine all the tests required for the course
- Course web page, digital camera as tool for active learning
- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

أ<u>.</u>د/ وجيه مصطفى الشونى

Head of Department:

أ.د/ علاء أبوزيد

Course Contents – Course ILOs Matrix																					
Course Contents	Weeks																1				
			an	stan		Intellectual						Practical						Tranferrable			
General bacteriol ogy		A 1	A 2	A 3	Α	1 B 1	B 2	B 3	B 4	B 5	C1	C 2	C 3	C 4	C 5	C 6	D 1	D 2	D 3	D 4	
Microbial phylogeny derived from ribosomal RNA sequences	1	٧	٧									٧							٧	٧	
	Isolation of bacteria from different sources										٧	٧									
Microbial taxonomy and its relationsh ip to phylogen y	2	٧	٧									٧							٧	٧	
	Biochemi cal identifica tion of isolated bacteria											٧		٧	٧						
Chemotax onomy (Genomic DNA:DNA	3	٧	٧									٧							٧	٧	

	ı	1	1		1				ı	1				1		
multilocu s sequencin g type, and lipid profiling)	Molecula									٧	V	V	✓			
	r identifica tion of bacteria									·	•	•	•			
The species concept in microbiol ogy. Nomencla ture and Bergey's Manual	4	٧	٧	٧						٧					٧	>
	Isolation of bacteria from different clinical samples				٧					٧		٧	√			
Isolation of pathogeni c bacteria from clinical specimen s (Growth media, blood cultures, urine cultures and fecal cultures)	5	٧					▼	٧	V	٧					√	V

Wounds and Abscesses . Genital specimen s and cultures of anaerobe s	5	V	٧	٧	V	٧	٧	V	V	V	٧	٧	V	✓	V	V	٧	٧	V	✓
	Determin ation of antimicr obial susceptib ility of antibiotic s against pathogen ic bacteria									٧		V	٧	V	٧					
Growth dependen t identificat ion methods. Clinical diagnosis	6	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	✓	٧	٧	٧	٧	٧	V
	Immunol ogical and serologic al studies of pathogen ic bacteria											٧	٧	V		٧				
Midterm examinati on	7	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Antimicro bial drug susceptibi lity	7	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	√	٧	٧	٧	٧	٧	٧	٧	٧

testing, Safety in Microbiol ogy laborator y, Biological containm ent and laborator y biosafety levels																				
Immunol ogy and clinical diagnostic methods	8	٧	٧	٧	٧	٧	√	√	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	√
Immunoa ssays for infectious diseases	8	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Polyclonal and Monoclon al Antibodie s, diagnostic and therapeut ic uses	9	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	✓	✓
In Vitro Antigen- Antibody reactions, agglutinat ion and uses in clinical and research laboratori es	10	٧	٧	V	٧	٧	V	V	٧	V	٧	٧	٧	٧	V	V	٧	٧	V	V
Fluoresce	11	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

nt antibodie s, Enzyme- linked immunos orbent assay and radioimm unoassay, sensitivity , and diagnostic and research																	
laboratori es applicatio ns																	
Immunob lot procedur e and identificat ion of specific proteins associate d with specific pathogen		12	٧	٧	٧	٧	٧	٧				V	√	√	√	√	V
Recent Molecular diagnostic methods	13		٧	٧	٧	V	٧	٧				~	√	<	<	>	٧
Round up discussion on the topics of the course	14		٧	٧	٧	٧	٧	٧				√	٧	√	√	√	٧
Microbial phylogeny derived from ribosomal																	

RNA																
sequences																
Applied Bacteriol		٧					٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
ogy																
Microbiol gical control of plant pathogen s	1	٧					V	٧					٧	٧	٧	٧
	Isolation of bacteria from different food sources							V	V	✓		٧				
Bacteria in food	2	٧					٧	٧					٧	٧	٧	٧
Diamining	Isolation and enumera tion of bacteria from water by filteratio n membra ne method	V					V	٧		V			V	V	V	
Biomining (Bioleachi ng)	3	V					V	٧					V	ν	ν	٧
	Isolation of hyperacc umelator bacteria from polluted						٧	٧	V	✓						

	soil																			
Water	4	٧									٧	٧					٧	٧	٧	٧
treatment																				
	Extracti										٧		٧	٧	٧					
	on of																			
	lipase																			
	and																			
	proteas																			
	e																			
	enzyme																			
	from																			
	bacteria																			
	bucceriu																			
Sewage	5	٧	٧	٧	٧						٧	٧					٧	٧	٧	٧
treatment																				
	Determin										٧		٧		٧	٧				
											V		ľ		V	ľ				
	ation of																			
	antagoni																			
	stic																			
	activity																			
	of																			
	bacteria																			
	against																			
	plant																			
	pathogen																			
	ic																			
	microorg																			
	anisms																			
Biological	6	٧	٧	٧	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
washing																				
powders																				
	Producti																			
	on of																			
	natural																			
	gasese																			
	from																			
	bacteria																			
Silage	7	٧					٧	٧	٧	٧										٧
making																				
and																				
single-cell																				
protein																				
Bioremed	8	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧									٧
		ĺ		ĺ	l	1		ĺ	ĺ	ĺ			ĺ	ĺ		ĺ	ĺ	ĺ	ĺ	

iation																				
Biodegrad ation xenobioti cs	9	٧	٧				٧	٧	٧	٧	٧									٧
Petroleu m Biodegrad ation	10	٧	٧				٧	٧	٧	٧	٧									٧
Natural gases	11	٧	٧				٧	٧	٧	٧	٧									٧
Microbial plastics	12	٧	٧				٧	٧	٧	٧	٧									٧
Discussio n	13																			
Assessme nt	14	٧	٧														٧	٧	٧	٧
Applied Mycology															٧	٧	٧	٧	٧	٧
Cultivatio n of edible mushroo m: preparati on of substrate, spawn and methods of spawning	1	٧	٧	٧	٧	٧														٧
	Pretreat ment of substrate for FSSF										٧	٧	٧	٧						_
Condition s of solid state fermentat	2	٧	٧	٧	٧	٧														٧

ion.																			
	Effect of water content on fungal growth during FSSF								√	٧	✓		✓						
Biodegrad ation of colored effluents: enzymes responsib le for effluents degradati on	3	✓	٧	٧	٧	√													✓
	PH requirem ent of fungal growth during FSSF								>	٧	>	>	>						
culture condition and microorga nisms for effluents degradati on	4	√	٧	٧	٧	٧													V
	Tempera ture variation and control during FSSF							√	√	٧	٧	√	√						
Upgradin g of lignocellul osic residue as	5	٧											٧	٧	٧	٧	٧	٧	٧

	1			1	1																
feed:																					
nutritive																					
value of																					
agricultur																					
al waste																					
	Different								٧	٧	٧	٧									
	substrate																				
Digestibili	6	٧												٧	٧	١	/	٧	٧	٧	٧
ty of																					
straw and																					
treatment																					
of straw																					
with																					
white-rot																					
fungi.																					
	Factors									٧	٧	٧		V		+	+				
	involved									•	•			•							
	in the																				
	selection																				
	of a																				
	suitable																				
	substrate																				
	for the																				
	desireds																				
	fungi to																				
	grow																				
Assignme	7	٧			٧	٧	٧	٧	٧	٧	٧									٧	٧
nt																					
	Cultivatio								٧	٧		٧		٧							
	n of																				
	edible																				
	mushroo																				
	m																				
Water	8	٧			٧	٧	٧	٧	٧	٧	٧									٧	٧
microbial																					
pollution																					
	Effect of							٧			٧		٧	٧							
	water																				
	content																				
	on fungal																				
	growth																				
	during																				
	FSSF																				
	FJJF																				
			İ			<u> </u>		İ		i .	l	<u> </u>	<u> </u>	<u> </u>	<u> </u>						

Water Microbiol ogy: pathogeni c microorga nisms transmitt ed by water,	9 FACTORS	٧	٧			V	V	٧	V	V			٧	V
	AFFECTI NG SPAWN PREPARA TION					V	V		V	V				
Ensuring the safety of drinking water,	10	٧	٧					>	>				√	٧
	Estimatio n of digestibil ity of fermente d lingo cellulosis is compoun d						√		>	>				
water pollution	11	٧	٧					٧	٧				٧	٧
	Decoloriz ation of colored effluents						>		V	<				
water purificatio n	12													
	Antimicr obial activity of some							٧	٧	٧				

	fungal																
	fungal pigment																
Sewage- treatment	13																
Assessme nt	Producti on of amylase enzyme	٧	٧	٧				٧	٧	٧	٧						
	Producti on of protease enzyme							٧	٧		٧						
Material s and Methods		٧	٧	٧				٧	٧	٧	٧						
Mutation, mutant detection, mutant selection and carcinoge nicity testing.	1	٧	٧	٧				٧	٧	٧	٧						
Southern blotting technique	2	٧	٧	٧							٧						
polymera se chain reaction	3	٧	٧	٧							٧						
Gene isolation and cloning	4	٧								٧	٧	٧	٧	٧	٧	٧	٧
Gene	5	٧								٧	٧	٧	٧			٧	٧

Probes																			
Cloning vectors	6	٧										٧	٧	٧	٧			٧	٧
Protein Blotting	7	٧										٧	٧	٧	٧			٧	٧
Northern blotting	8	٧	٧	٧	٧	٧	٧						٧	٧	٧			٧	٧
Western blotting	9	٧	٧	٧	٧	٧	٧						٧	٧	٧				٧
Gene expressio n	10	٧	٧	٧	٧	٧	٧						٧	٧	٧				٧
Expressio n vectors	11	٧											٧	٧	٧				٧
Assignme nt	12	٧										٧	٧	٧	٧				٧
Application of genetic engineering	13	٧										٧	٧	٧	٧				٧
Antimicro bial drugs assessme nt	14	٧										٧	٧	٧	٧				٧
Antibacte rial compoun ds	15	٧										٧	٧	٧	٧				٧
Antifunga I compoun ds	16	٧										٧	٧	٧	٧	٧	٧	٧	٧
Leather Tanning By Microor ganisms																			
Microbial	1	٧						٧	٧	٧	٧								٧

proteases																				
Microbial collagena ses	2	٧						٧	٧	٧	٧									٧
Microbial gelatinase s	3	٧						٧	٧	٧	٧									٧
Microbial Lipases	5	٧						٧			٧									٧
Leathers nature	6	٧	٧	٧	٧	٧	٧	٧			٧									٧
Leather tanning process	7	٧									٧	٧	٧	٧	٧					
Processin g of leather during tanning preparati on	8	٧									٧	٧	٧	٧	٧					
Protection the processed leather against microbial invaders	9	٧									٧	٧	٧	٧	٧					
Preservati on of the processed leather against microbial invaders	10	٧									٧									
Assignme nt	11	٧						٧	٧	٧	٧					٧	٧	٧	٧	٧
Microbial problems associatin g with	12	٧						٧	٧	٧	٧					٧	٧	٧	٧	٧

Leather processin g during tanning process at industrial level																		
New approach es for leather processin g during tanning process	13	٧						√	√	√	٧			√	√	√	√	√
Open discussion	14	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧	٧	٧
Assesse ment	15																	

7. Teaching and learning methods / ILOs matrix:

Course contents		ŀ	<			I		ŀ)			
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧					
Supplementary and library research.										٧	٧	٧
Practical sections.								٧	٧			
external visits and student activities.										٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

8. Assessment methods / ILOs matrix:

Course contents		ŀ	<			1		ſ)		Т	
	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3

Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧
Practical exam								٧	٧	٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Title: Biostatistics	Code: 1518
Coordinator	Professor Kamal Shaltout
Other Staff	Prof. Dr/ M. Ezzat Abdel Monssef
Course Delivery	1 st semester: 14 x 1h lectures 14 x 2h practical
	2 nd semester: 14 x 1 lectures
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

- Achieve a comprehensible form of the too much data that characterizes the modern biological research. Apply statistical tests for evaluating differences, variations and associations between populations and their significance in probability terms. Teach the students the modern software programs for statistical analysis and to interpret and make inferences from analysis of set of observations sampled from a population. Find out the best possible experimental design that provides the best sorting out of the controlled and uncontrolled variations.

Intended learning outcomes of course (ILOs)

a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the role of the biostatistics in the procedure of the biological scientific research.
- A2. Recognize the association between variables in normal and non-normal distributed populations (correlations and regressions).
- A3. Compare between each pair of treatments in multi-treatment experiments
- A4. Explain the tests of significance of difference between two or more than two sampled populations.
- A5. Discuss the application, advantages and disadvantages of the different types of experimental designs.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to: B11. Differentiate between the characteristics of the different types of distributions B12. Demonstrate the principles and approaches underlying current methods of biostatistics and its application using computer software programs B13. Apply the best suitable statistical tests for the different biological experiments B14. Design suitable experimental B15. Analyze the results statistically

c- Professional and practical skills

By the end of the Diploma course the graduate must be able to :-

- C17. Perform the best suitable statistical tests for the different biological experiments
- C18. Provide the statistical consultation for the students and researchers of biology.
- C19. Prepare the suitable experimental design and how to analyze the results statistically

d- General and transferable skills

By the end of the Diploma course the graduate must be able to :-

- D13.Use databases and library search methods as well as internet sites
- D14.Independent learning ability required for continuing professional development
- D15. Work with others, use and manage ideas and information .
- D16. Demonstrate written and verbal communication skills on modern approaches

Contents

Week	Topic (1 hour / week)
1	Introduction about Biostatistics as a tool of scientific research
2	Sampling of attributes
3	Frequency and probability distributions
4	Normal distribution
5	Binomial distribution
6	Frequency and probability distributions
7	Normal distribution and Binomial distribution
8	Poisson distribution
9	Tests of significance
10	Round-up discussion on the previous topics

11	Partial examination
12	Introductory note on analysis of variance
13	Data transformations, One-way analysis of variance
14	Some basic experimental designs (completely random, randomized complete block and Latin square designs)
15	Two-way analysis of variance
16	Split-plot experimental design Split-plot experimental design
17	Least significant difference (LSD)
28	Least significant range (LSR) tests
29	Simple linear regression
20	Simple linear regression
21	Rank correlation
22	Curve fitting
23	method of least squares
24	Multiple correlation, regression and analysis of time series
25	Multiple regression
26	Analysis of time series
27	Round up discussion on the previous topics
28	Round up discussion on the previous topics
L	

Teaching, and learning methods:

- 4.1. Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60

231

Practical exam	Р, Т	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA

Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA

Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Recommended books

Voelkl, K. E. & Gerber, S. B. 1999. *Using SPSS for Windows: Data Analysis and Graphics*. Springer, New York, USA.

Stephens, L. J. 1998. *Beginning Statistics*. Schaum's Outline Series, McGraw-Hill. New York, USA.

Web sites

www.google.com

http://www.accessexcellence.org/RC/genetics.htm

www.researchnavigator.com

Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

أ.د/ كمال حسين شلتوت

Head of Department:

أد/ علاء مصطفى أبو زيد

Course ILOs Matrix

Course Contents	Weeks																			
				wledg erstar	e and		Inte	llectu	ıal				Pra	actica	I			Tranfe	errabl	e
		A1	A2	A3	A4	B1	B2	В3	B4	B5	C1	C2	C3	C4	C 5	C6	D1	D2	D3	D4
Introduction	1	٧	٧	٧										٧	٧	٧	٧	٧	٧	٧
about Biostatistics as a tool of scientific research		V	V	V										V	V	V	V	V	V	V
Sampling of attributes	2	٧	٧	٧										٧	٧	٧	٧	٧	٧	٧
Frequency and probability distributions	3	٧	٧	٧										٧					٧	٧
Normal distribution	4	٧	٧	٧					٧	٧	٧	٧	٧	٧					٧	٧
Binomial distribution	5	٧	٧	٧					٧	٧	٧	٧	٧	٧					٧	٧
Frequency and probability distributions	5	٧	٧	٧	٧	٧														
Normal distribution and Binomial distribution	6	٧	٧	٧	٧					٧	٧	٧	٧	٧			٧	٧	٧	٧
Poisson distribution	7	٧	٧	٧	٧					٧	٧	٧	٧	٧			٧	٧	٧	٧
Tests of significance	7	٧	٧	٧	٧					٧	٧	٧	٧	٧			٧	٧	٧	٧
Round-up discussion on the previous topics	8	٧	٧	٧	٧	٧							٧	٧			٧	٧	٧	٧
Partial examination	8	٧				٧							٧	٧	٧	٧	٧	٧	٧	٧
Introductory note on analysis	9	٧				٧	٧	٧	٧	٧								٧	٧	٧

of variance																					
Data transformations, One-way analysis of variance	10		٧				٧	٧	٧	٧	٧								٧	٧	٧
Some basic experimental designs (completely random, randomized complete block and Latin square designs)	11		٧				٧	٧	٧	٧	٧								٧	٧	٧
Two-way analysis of variance		12	٧									٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Split-plot experimental design Split-plot experimental design	13		٧									٧	٧	٧						٧	٧
Least significant difference (LSD)	14		٧									٧	٧	٧						٧	٧
Least significant range (LSR) tests	15																				
Simple linear regression	16		٧									٧	٧	٧						٧	٧
Simple linear regression	17		٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧	٧
Rank correlation	18		٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧	٧
Curve fitting	19		٧	٧	٧	٧	٧	٧								٧				٧	٧
method of least squares		20	٧	٧												٧				٧	٧
Multiple correlation, regression and analysis of time series	21		٧	٧					٧	٧	٧	٧	٧	٧	٧	٧				٧	٧
Multiple regression	22		٧	٧	٧								٧	٧	٧	٧				٧	٧

Analysis of time series	23	٧	٧	٧						٧	٧	٧	٧	٧	٧	٧	٧	٧
56.765																		
Round up discussion on the previous topics	24	٧	٧	٧						٧	٧							٧
Round up discussion on the previous topics	25	٧	٧	٧				٧	٧	٧	٧							٧
Introduction about Biostatistics as a tool of scientific research	26	٧	٧	٧				٧	٧	٧	٧							٧
Sampling of attributes	27	٧	٧	٧				٧	٧	٧						٧	٧	٧
Frequency and probability distributions	28	٧	٧				٧	٧	٧	٧						٧	٧	٧

Teaching and learning methods / ILOs matrix:

Course contents		К			I		Р		Т			
		A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧					
Supplementary and library research.										٧	٧	٧
Practical sections.								٧	٧			
external visits and student activities.										٧	٧	٧

* K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs matrix:

Course contents	К			I			Р		Т			
	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧
Practical exam								٧	٧	٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

M.Sc. Programme of Microbiology

Tanta University, Faculty of Science

M. Sc. program specifications of Microbiology

Program parent Department	Botany Department
Academic year	2013/2014
Date of specification approval	8/2014

A- Basic Information

Program title:	M. Sc. Degree in Microbiology.
Program type	Single.
Coordinator:	Head of Botany Department.
QAA Benchmarking Standards	Academic Reference Standards (ARS)
Date of Delivery	Every year in June.
Review Date	Internal Periodic Review, every Summer

B- Professional Information

1. Program aims

To understand main aspects of microbiology, learn modern microbiological techniques, provide intense hands-on training in different microbiological fields including taxonomy, physiology and genetics, explore theory and practice of microbiology population, characterize and arranging microorganisms in an orderly manner, improve theoretical and practical fundaments of microbial cell and pathogenic microorganisms, and know the basic statistical procedures used to analyze data

2. Intended Learning outcomes

A. Knowledge and understanding:

At the end of this module students should have acquired knowledge and understanding of the underlying concepts and principles of:

- A32. Microorganisms (Fungi, Bacteria, Algae and viruses) biology
- A33. Different microbiological basis and methods, and chemistry of microbial enzymes and nutrients metabolism.
- A34. Microbial Genetics, applied microbiology, microbial fermentation, instruments used in microbiology field and immunology
- A35. Microbial population taxonomy
- A36. Microbial Cell structure and culture techniques
- A37. IT and basic statistical procedures used to analyze data

B. Intellectual skills:

At the end of this module students should have acquired the ability to:

- B11. Think logically and organize tasks into a structured form.
- B12. Assimilate knowledge and ideas in microbiology field based on wide reading and through the internet.
- B13. Understand the evolving state of knowledge in a rapidly developing research area in microbiology field.
- B14. Construct and test hypothesis.
- B15. Plan, conduct and write a report on an independent research project

C. Professional and practical skills

At the end of this module students should have acquired the following skills:

- C30. Conduct basic techniques and methods to the studies and research in microbiology.
- C31. Be able prepare written protocols for experimental procedures and collect and interpret data from experimental observations and measurements within their work in different microbiology specific area
- C32. Be able to design and conduct individual and shared research projects both in the laboratory and in the field.
- C33. Be able to use computer software and web sites and other forms of information technology for data collection, analysis and presentations

D. General and transferable skills:

- D50. Work in a team and be able to cooperate with others
- D51. Demonstrate microbial written and verbal communication skills using IT in work and in life
- D52. Have knowledge of accounting and management.
- D53. Ability to manage time and resources
- D54. Present ideas and arguments in a structured manner

E. Teaching and learning

Knowledge will be developed through

- 4. Lectures
- 5. Practicals

F. Assessment

A wide variety of assessment methods are used

1. Written exam.

Practical exam.

3. Academic standards

The Academic Reference Standards for the award of master in Microbiology As well as the attributes and capabilities of the graduate This programme gives an opportunity to:

- Provide students with the main basic and updated concepts of microbiology at advanced level.
- Deliver students with a broad understanding of the fundamental principles of Microbiology emphasizing Fungi, Bacteriology and Virology and its impact on human, animals and plants
- Study the diverse aspects of the field of microbiology, including biochemistry, ecology, genetics, molecular biology, pathogenicity, phylogeny, industrial application of microorganisms in different fields.
- Equip students with IT.

3.A External references for standards (Benchmarks):

In order to fulfill international standards, our students should acquire

I. Knowledge and Understanding:

Approaches to study and forms of subject knowledge likely to be common to all bioscience degree programmes will include the following:

- knowledge and understanding of the processes and mechanisms of life
 - From molecular to cellular.
 - From Organism to community.
- engagement with the essential facts, major concepts, principles and theories associated with the chosen discipline.
- understanding of information and data, and their setting within a theoretical framework.
- familiarity with the:
 - Terminology.
 - Nomenclature.
 - Classification systems as appropriate.
- Methods of acquiring, interpreting and analysing biological. information with a critical understanding of the appropriate contexts for their use through the:
 - Study of texts.
 - Original papers.
 - · Reports and data sets.

- Developing knowledge about the diversity of life and its evolution.
- Knowledge of a range of practical techniques and methodologies, including:
 - Data analysis.
 - Use of statistics.
- Engagement with current developments in the biosciences and their applications, and the philosophical and ethical issues involved.
- The applicability of the biosciences to the careers to which graduates will be progressing.

II. Skills

G. Generic skills

- an appreciation of the complexity and diversity of life processes through the study of organisms, their molecular, cellular and physiological processes, their genetics and evolution, and the interrelationships between them and their environment.
- the ability to read and use appropriate literature with a full and critical understanding.
- the capacity to give a clear and accurate account of a subject.
- critical and analytical skills: a recognition that statements, should be tested and that evidence is subject to assessment and critical evaluation.
- the ability to employ a variety of methods of study in investigating, recording and analyzing material.
- the ability to think independent, set tasks and solve problems.

H. Key skills

The specific key skills that should be developed in bioscience degree courses are subdivided into:-

1. Intellectual skills

- Recognising and applying subject-specific theories, concepts or principles. For example:
 - The relationship between genes and proteins.
 - The nature of essential nutrients in microbes, cells, plants and animals;
- Analyzing and summarizing information critically, including published research or reports;
- Obtaining and integrating several lines of subjectspecific evidence to formulate and test hypotheses;
- Applying subject knowledge and understanding to address familiar and unfamiliar problems

2. Practical skills

- Designing, planning, conducting and reporting on investigations. The data may be obtained through:
 - individual
 - group projects
- Obtaining, recording, collecting and analyzing data using appropriate techniques in the field and/or laboratory, working by themselves or in a group
- Undertaking field and/or laboratory investigations of living systems in a responsible, safe and ethical manner.
 For example, Students must pay due attention to risk assessment, relevant health and safety regulations, and respect for animal & plant life
- In some Bioscience degrees, graduates will learn to respect rights of access, for example:-
- In field work or in order to map the genes of a community, family or group of plants or animals, including humans. They should show sensitivity to the impact of investigations on:
 - the environment.
 - the organisms under investigation.
 - other stakeholders.
- Preparing, processing, interpreting and presenting data, using appropriate qualitative and quantitative techniques:
 - Statistical programmes.
 - Spreadsheets.
 - Programs for presenting data visually.
- Solving problems by a variety of methods including the use of computers.
- Using the internet and other electronic sources critically as a means of communication and a source of information.

3. Interpersonal and teamwork skills

- Identifying individual and collective goals and responsibilities and performing in a manner appropriate to these roles:
- Recognising and respecting the views and opinions of other team members;
- Negotiating skills;
- Evaluating performance as an individual and a team member; evaluating the performance of others;

 Developing an appreciation of the interdisciplinary nature of science and of the validity of different points of view.

•

4. Self-management and professional development skills

- Developing the skills necessary for self-managed and lifelong learning (e.g. working independent, time management and organisation skills);
- Identifying and working towards targets for personal, academic and career development;
- Developing an adaptable, flexible, and effective approach to study and work.

3.B-Comparison of provision to external references:

International Academic Standards (NARS)

- Although the provision is quite comparable to its benchmark there are a number of points that should be highlighted for the purpose of achieving advancement in the specifications and qualities of the Microbiology program at Botany Department, Faculty of Science, Tanta University as follows:
- Searching for new antimicrobial compounds, microbial genetic diversity and microbial enzymes applications.
- Skill of performing diverse laboratory techniques of molecular biology important in the improving quality and quantity of crops yield and controlling plant pathogens should be stressed upon. Furthermore, skills of performing Laboratory food analysis to evaluate the food mycological toxin as health dangerous agent should be addressed.
- Microbiology Diploma students should acquire proper skills to keep up with the microbiological literature and to appreciate the need for life-long continuing education, starting the day after their graduation.
- Students should have the aptitude of critical evaluation, synthesis and interpretation of botanical information and data, production of botany-specific scientific documentation, and presentation of botanical information and arguments clearly and correctly in writing and orally, to both specialist and lay audiences.

4.a.Program duration: One academic year (2 semesters).

4.b.Program Structure:

All applicants admitted to the master's program are required to study 6 selected theoretical courses and one practical course approved by the department council from the master courses offered by the department for one academic year. A part of the M.Sc. courses offered by the Botany Department, the student should study a course in English language for a minimum one hour per week. Albeit, students who have taken equivalent English language course may be exampled from it upon the recommendation of the Faculty Council.

No. of hours per week: 12 Lectures and 6 hours practical

The registration for the preliminary year takes place in October, and the final exam. Is held once a year (June) in the date approved by the Faculty Council.

Grade Assessment:

Final Written Exam.60%

Final Practical Exam 40%

*< 60% failed

60-64 passed, 65-79 good, 80-89 very good, >90% excellent

*Failed students can repeat the course (s) only once.

5. Program Contents

N	Code	Course Name	Lecturer
1	2052	Phycology, Physiology of algae, physiology of fungi	Prof. Dr. Atef Abo-Shady Dr. Abdel-Fattah Abo Mohra Prof. Dr.: Alaa Abou Zeid
2	1542	Biochemistry, Fermentation, Immunology,	Prof. Dr. Essam Abo Kassem Prof. Dr. Metwally Abdel-Azeem Prof. Dr. Nanis Allam
	2053	Phytopathology, special fungi, virology	Prof. Dr.: Omyma Awadalla Prof. Dr.: Susan Assawah Dr.: Samia Shabana
3	2054	General bacteriology, applied bacteriology, applied mycology, instrumental methods of microbiology, use of microorganisms in leather tanning	Prof. Dr. Wagih El-Shouny Prof. Dr. Essam Azab Prof. Dr. M. Yasser Bedaiwy Prof. Dr.: Hanan Mubarak
5	1518	Biostatistics	Prof. Dr. Kamal Shaltout Dr. Mohamed Abdelmonsef

Course Name	Code No	Contents
Phycology, Physiology of algae, physiology of fungi	2052	The basic principles and core of what are algae and how they live, reproduce and cultivation How to identify algae of lakes, soils, streams and ponds as well as marine algae. Exploring the fundamental principles of fungal physiology especially spore germination, with reference to dormancy, constitutive dormancy, exogenous dormancy, enzyme complement and biosynthetic process during spore

		germination.
Biochemistry, Fermentation, Immunology,	1542	Provide the students with the fundamental concepts of sucrose and lipid metabolism and related enzymes. Equipped the students with the basis of immunity to bacteria and fungi.
Phytopathology, special fungi, virology	2053	Discuss the mechanism of immunology in tumor and viruses. Identify the defense systems in Plant.Develop the modern experimental approaches in biochemistry of fermentation, selection and preservation of microorganisms and production of useful materials. Classify the different group of fungi and give an account on it's hosts in different habitats. Explore the principles of plant pathology in terms of disease cycle, plant defense against pathogens and methods for controlling plant diseases. Understand the feature, molecular structure, transmission and diagnosis of many of viral diseases.
General bacteriology, applied bacteriology, applied mycology, instrumental methods of microbiology, use of microorganisms in leather tanning	2054	Teach students the modern experimental approaches in bacteriology that reflect the microbial diversity and evolution, in addition to modern techniques used for classification and diagnosis of bacteria. Provide students with the fundamental concepts and principles of microbial mutation basis, polymerase chain reaction, DNA southern blotting, RNA blotting, Western blotting, microbial genes isolation, cloning and expression. In addition to, natural antimicrobial compounds and assessment methods. Learn about Leather industrial tanning process and the roles of microorganisms in this industry. Also, the applications of microbial enzymes in leather treatments. Use of agriculture waste materials for cultivation of edible mushroom and the possible means for biodegradation of colored effluents, in addition to the nature of water pollution with microorganisms.

	1518	Statistical definitions, sampling of attributes,
		distributions (Normal, Binomial, Poisson), and tests of
Biostatistics		significance, Part two: Analysis of variance, experimental
BIOSTATISTICS		designs, association between variables, curve fitting and
		the method of least square, multiple and partial
		correlation and regressions, and analysis of time series.

6-Thesis

- The thesis of M.Sc. program is a formal written document representing sustained research into an important intellectual issue. The thesis must be an independent effort which contributes to the accumulated understanding of the field in which it is written. The required research preparation and advanced research methods courses will help the student to focus his or her research effort, and provide general guidelines for research approach and report preparation. Thesis will be reviewed and approved by the candidate's supervising professor and external academic review committee.
- The thesis should contain at least the following:
- Title page (title, name of student, university, faculty, name of program, date, supervisors).
- Table of contents.
- Introduction, containing a definition of the thesis statement, working method, the theoretical framework, and the aim.
- Literature review.
- Materials and methods.
- Results
- Discussion and conclusions.
- References.
- Language of the thesis: The thesis must be written in English language accompanied by a summary in Arabic.
- Formation of Examiners Committees.
- A committee is selected by botany Department Council. The M.Sc. Degree
 is awarded to the applicant by University, upon the recommendation of
 the department and the Faculty Council.
- Program Admission Requirements:
- An applicant for admission to the M.Sc. program in Microbiology should hold a B.Sc. degree in Microbiology with a minimum grade of (Good = 70%).
- The candidate should pass successfully:
- · Courses of pre-master academic year
- Written Thesis

Oral Presentation

Defense

· At least one published paper

Formation of Examiners Committees

A committee is selected by Botany Department Council. The M.Sc. Degree is awarded to the applicant by University, upon the recommendation of the department and the Faculty Council.

7-Admission:

An applicant for admission to the master's program should hold Botany B.Sc. degree in science either major with a minimum grade "Good" or double major with a minimum general grade "Good" from any Egyptian or equivalent institute. In addition, all applicants must satisfy the department graduate admission.

8- Evaluation of programme intended learning outcomes

Evaluator	Tool	Sample
1 Alumni	Questionnaire	
2- Stakeholders (Employers)	Questionnaire	
3- External Evaluator(s)	Report	

Program coordinator:

Prof. Dr.: Alaa Abou-Zeid

Head of Department:

Prof. Dr.: Alaa Abou-Zeid

Date: 8/2014

M. Sc. program Microbiology matrix

Course Title	Co urs e cod			aı ers	led nd star				tel cill:		tua	1	_	rac:		al	tr		fer	an abl	
	е	A 1	A 2	A 3	A 4	A 5	A 6	В 1	B 2	B 3	B 4	В 5	C 1	C 2	C 3	C 4	D 1	D 2	D 3	D 4	D 5
Algae, Physiolo gy of Algae, Physiolo gy of fungi	20 52	٧	٧	٧	٧		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	√
Biochem istry, Biochem istry of ferment ation, Immunol ogy	15 42				٧	٧		√			√	٧	√		√			√		√	
Phytopa thology, special fungi, virology	205	٧	٧	٧	٧	٧	٧					٧	٧		٧			٧	٧	٧	٧
General Bacteriol ogy, Applied Bacteriol ogy, Applied Mycolog y, Method	20 54	٧			V	٧		٧			√				٧	٧	√		√	V	√

ology															
and															
Instrume															
nts used															
in															
microbio															
logy and															
Tanning															
of															
leather															
Biostatis	15		٧	٧	٧	٧			٧	٧		٧	٧	٧	٧
tics	18														

Title: Algae, Physiology of Algae, Physiology of fungi	Code: 2052
Coordinator	Prof. Dr. Alaa M. Abou Zeid
Other Staff	Prof. Atef Abo Shady
	Drof. Abdel Fattah Abo mohra
Course Delivery	1 st semester: 14 x 2h lectures 14 x 4h practical
	2 nd semester: 14 x 1 lectures 14 x 2 practical
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

The basic principles and core of what are algae and how they live, reproduce and cultivation. How to identify algae of lakes, soils, streams and ponds as well as marine algae. Exploring the fundamental principles of fungal physiology especially spore germination, with reference to dormancy, constitutive dormancy, exogenous dormancy, enzyme complement and biosynthetic process during spore germination. Understand the feature, molecular structure, transmission and diagnosis of many of viral diseases.

Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the Diploma course the graduate must be able to :-

- A.1- Identify the Characteristics of algae.
- A.2- recognizes the essential enzymes required for growth and metabolism.
- A.3. List the role of Algae in microbiological activities and in water quality.
- A.4 Identify the structure of some diseased viruses plants changes.
- A5- List the symptoms of viral infection and human diseases and diagnosis of them
- A6 Recognize the different methods for Viruses Prevention and its control

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B11. analyze microbiological information from a variety of sources
- B12. Categorize the principles, underlying fungi metabolism and different nutrients metabolic regulatory circuits.
- B13. Explain the basis of fungi transformation process.
- B14. Demonstrate the principles of fungal physiology in a manner appropriate to their programme of study.
- B15. Illustrate using algae as biomarkers and indicators for water pollution.
- B16. distinguish the effect of algae on our life
- B7. Differentiate between the different symptoms of plant virus infection.
- B8. Illustrate the method of transmission of different types of hepatitis and HIV.
- B9. Critically evaluates and discusses the primary literature and topics in virology.

c- Professional and practical skills

By the end of the M. Sc. course the graduate must be able to :-

- C11. Differentiate between the different groups of fungi and algae under microscope
- C12. Determine pathways of some essential products produced by fungi and algae
- C13. Use different methods for fungi laboratory manipulation.
- C14. manage strategy for fungi metabolism and transformation processes by fungi
- C15. use statistics to evaluate the efficiency of different methods used in that field
- C16. carry out laboratory work

d- General and transferable skills

By the end of the Diploma course the graduate must be able to :-

- D6. prepare of a research proposal
- D7. prosecute of research by applications of laboratory or field techniques
- D8. Prepare complete and clear scientific report
- D9. Draw the micro-organisms
- D10. Possess good project management and business skills.

Contents

	Physiology of algae (1 hour / week)
Week	Торіс
1	Modes of nutrition in different algal phyla
2	Reserve food
3	Chloroplast structure and supramolecular organization of photosynthetic membranes
4	Photosynthesis
5	Photorespiration (Significant differences between unicellular algae, multicellular algae and higher plants
6	Effect of light quality on carbon metabolism
7	Assimilation of organic compounds (Acetate and glucose)
8	Effect of nitrogen and phosphorus nutrition on growth, pigments and photosynthesis
9	Biosorption of heavy metals and its use in purification of waste water.
10	Oxidative stress
11	Antioxidative defenses in some algae (antioxidant enzymes and molecules).
12	Antimicrobial production from micro algae.
13	Antimicrobial production from seaweeds
14	Exopolysaccharides and its role
15	Spirulina and its medical uses
	Physiology of Fungi (1 hour / week)
Week	Торіс
1	Spore germination of fungi
2	Dormancy (exogenous dormancy)
3	Constitutive dormancy
4	Breaking dormancy

5	Stimulatory substances (maturation)
6	Heat shock proteins in fungi
7	Cellular effects of heat shock proteins
8	Heat shock and development
9	Chitosan and fungi
10	Production of chitosan by fungi
11	Some applications of chitosan
12	Fungicides
13	Systemic fungicides
14	Selective Topic
15	Uptake and translocation and mechanism of systemic
	fungicides action.
	Phycology (1 hour / week)
Week	Topic
1	What are algae
2	What are algae Algae and the food they make
2	Algae and the food they make
2	Algae and the food they make Algae of streams and rivers
3	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons
2 3 4 5	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons How algae grow and reproduce
2 3 4 5	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons How algae grow and reproduce Cell division in diatoms
2 3 4 5 6	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons How algae grow and reproduce Cell division in diatoms Reproduction units in algae
2 3 4 5 6 7 8	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons How algae grow and reproduce Cell division in diatoms Reproduction units in algae Algae of Lakes and ponds
2 3 4 5 6 7 8	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons How algae grow and reproduce Cell division in diatoms Reproduction units in algae Algae of Lakes and ponds Effect of light on the distribution of algae in Lakes and ponds
2 3 4 5 6 7 8 9	Algae and the food they make Algae of streams and rivers Methods for studying phytoplanktons How algae grow and reproduce Cell division in diatoms Reproduction units in algae Algae of Lakes and ponds Effect of light on the distribution of algae in Lakes and ponds Effect of nutrients on algae distribution

14	Genetic engineering of algae
15	Assessment
16	Transformation of algae
	Virology (1 hour / week)
Week	Topic
1	General features of virus
2	Factor affecting on transmission of plant virus
3	External symptoms of plant virus
4	Internal symptoms of plant virus
5	Different method of transmission of plant virus
6	Acquire resist of plant virus
7	Hepatitis A: structure, epidemiology diagnosis, prevention & care
8	Hepatitis B: structure, epidemiology diagnosis, prevention & care
9	Hepatitis C: structure, epidemiology diagnosis, prevention & care
10	Interferon
11	Human immunodeficiency virus(HIV)
12	Causes and type of cancer
13	Development of cancer cell

Practical

Practic	
	Algae and physiology of algae(4 hour / week)
Week	Topic
1	Isolation of algae from different sources
2	Purification of isolated algae 1
3	Purification of isolated algae 2
4	Different methods of measurement of algal growth
5	Measurement of growth curve by OD
6	Measurement of growth using biomass productivity
7	Studying the effect of carbon source on algal growth
8	Field trip for collection of seaweed
9	Studying the effect of organic compounds on algal growth
10	Effect of nitrogen and phosphorus nutrition on growth.
11	Oxidative stress caused by H2O2
12	Antimicrobial activity by some of the isolated algae
13	Antimicrobial production from seaweeds
14	Assessment
	Physiology of Fungi(2 hour / week)
Week	Topic
1	Crowded-plate method
2	direct-soil- inoculation method (specific antibiotic method)
3	Dilution culture method
4	Streak method
5	Assay of antibiotics
6	Chemical assay
7	Biological assay
8	Cylinder-plate method
	-

9	Turbidimetric method
10	All-or none growth method
11	Penicilin
12	Seperation and purification of penicillin:
13	Properties of penicillin
14	Assessment

4. Teaching, and learning methods:

- 4.1. Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

5. Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	P, T	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

- Fungal Physiology, Second Edition by David H. Griffin, Wiley-Liss, A John Wiley & Sons, Inc, Publication, New York (1994)
- Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine

Edited by Tkacz, Jan S.; Lange, Lene Springer 2004

Recommended books

- Fungal Genomics - Applied Mycology and Biotechnology volume 4 Edited by D K Arora and G G Khachatourians Elsevier February 2004.

- Algal Ecology, Freshwater benthic ecosystems, Edited by Stevenson, R.J., Bothwell, M.L., Lowe R.L. Academic Press (1996)
- Algal culturing techniques, Edit Anderson, R.A., Elsivier (2005) Virology of flowering plants W. A. Stevens, B. Sc Ph.D.

Lecture in botany, royal Holloway collage, university of London, Blackie

Glasgow and London distributed in the USA by Chapman and Hall , New York 2000

Web sites

- http://www.who.int/vaccines/intermediate/hepatitis. Accessed February 15, 2006
- http://www.who.int/inffs/en/fact 164.html. Accessed February 15, 2006
- http://www.google.de/
- www. Algaebase.com

Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

أد/ علاء مصطفى أبو زيد

Head of Department:

أد/ علاء مصطفى أبوزيد

Date: 8\2014

Course Contents - Course ILOs Matrix

Cour																											
se Cont ents/ Theo ritica	Prac tical			wle erst						lr	nte	lled	tua	al				P	rac	tica	al		т	ran	feri	rab	le
Phys		Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	С	С	С	С	С	С	D	D	D	D	D
gy of		1	2				6		2	3		5	6	7	8	9		2			5			2		4	
algae Mod																											
es of nut ritio n in diff ere nt alga l phy la		٧	٧				٧	٧	٧	٧				٧											٧	٧	٧
	Iso lati on of alg ae fro m diff ere nt so urc es																٧	٧	٧	٧							
Res erve foo d		٧	>				٧			>				٧												>	٧
	Pu rifi cat ion of iso lat ed alg																٧		٧	٧	٧	٧					

	ae																					
Chl	1																					
oro																						
plas																						
t																						
stru ctur																						
e																						
and																						
sup																						
ram																						
olec ular																						
org			٧	٧				٧	٧									٧	٧	٧	٧	٧
aniz																						
atio																						
n of																						
pho																						
tosy nth																						
etic																						
me																						
mbr																						
ane s																						
5	Pu																					
	rifi																					
	cat																					
	ion of																					
	iso											٧	٧	٧	٧	v	v					
	lat											۰	٠	٠	٠							
	ed																					
	alg																					
	ae 2																					
Pho	4																					
tosy		٧				٧	٧	٧													٧	٧
nth		v				٧	٧	٧													٧	•
esis	Dif																					
	fer																					
	ent																					
	me																					
	tho ds																					
	of											٧	٧		٧	٧	٧					
	me																					
	as																					
	ure																					
	me nt																					
	nt																					

	of alg al gro wt h																	
Pho tore spir atio n (Sig nifi can t diff ere nce s bet wee n uni cell ular alga e, mul tice llul ar alga e and hig her pla nts						~	>										>	V
	Me as ure me nt of gro wt h cur ve by OD											>	٧	✓	>			
Effe ct		٧	٧				٧	٧									٧	٧

of ligh																				
t qua																				
lity																				
on car																				
bon																				
met																				
abo																				
lis																				
m	Me																			
	as																			
	ure																			
	me																			
	nt																			
	of																			
	gro wt																			
	h																			
	usi										٧	٧			٧	٧				
	ng																			
	bio																			
	ma ss																			
	pro																			
	du																			
	cti																			
	vit																			
Assi	У																			
mil																				
atio																				
n of																				
org																				
ani c																				
com		٧		٧	٧				٧	٧							٧	٧		
pou																				
nds																				
(Ace																				
tate and																				
gluc																				
ose)																				
	St																			
	ud yin																			
	g											٧	٧	٧	٧	٧				
	g the												,		,					
	eff																			
	ect																			

Effo	of car bo n so urc e on alg al gro wt h																	
Effe ct of nitr oge n and pho sph oru s nut ritio n on gro wth , pig me nts and pho tosy nth			✓	>	٧				٧	>						>		
esis	Fie																	
Bio	ld tri p for col lec tio n of sea we ed						٧	٧					٧	٧		V		

sor ptio n of hea vy met als and its use in puri fica tion of was te wat er.																						
	St ud yin g the eff ect of org ani c co mp ou nd s on alg al gro wt h													∨	v	v	٧	٧				
Oxi dati ve stre ss				٧	٧	٧			٧	٧	٧	٧							٧	٧	٧	٧
	Eff ect of nit rog en an												٧	٧	٧							

	d ph os ph oru s nu trit ion on gro wt h.																								
Anti oxid ativ e defe nse s in som e alga e (ant ioxi dan t enz yme s and mol ecul es).		V	>	٧	٧	٧	٧							٧	∨	>									
	Oxi dat ive str ess ca us ed by H2 O2															٧	٧	٧	٧	٧					
Anti mic robi al pro duc tion		٧	٧	٧				٧	٧	٧	٧	٧	√	٧	٧						٧	٧	٧	٧	٧

fro m mic ro alga e.																											
	An tim icr obi al act ivit y by so me of the iso lat ed alg ae																	٧	٧	٧	٧	٧					
Anti mic robi al pro duc tion fro m sea wee ds		٧	٧	٧				٧	٧	٧	٧	٧	٧	٧	٧					٧		٧	٧	٧	٧	٧	٧
	An tim icr obi al pro du cti on fro m sea we eds																٧		٧				٧				
Ass ess me		٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧

nt																										
	As ses sm ent															٧	٧	٧	٧	٧	٧					
Phyc	olo																									
gy Wh																										\vdash
at are alga e	-	٧	٧					٧	٧	٧	٧	٧														V
Alg ae and the foo d the y ma ke	-	٧	٧					٧					٧	٧	٧										٧	٧
Alg ae of stre ams and rive rs	-	٧					٧				٧	v	٧												٧	٧
Met hod s for stu dyi ng phy topl ank ton s	-	٧					٧				٧	٧	٧												٧	٧
w alga e gro w and repr odu ce	-	٧	٧	٧	٧	٧	√				V	√	٧	٧	٧										√	v
Cell	-							٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧

divi																								
sion																								
in																								
diat																								
oms																								
Rep																								
rod																								
ucti																								
on		٠,	٧	٠,	٠,	٠,	٠,	٧	٠,	٠,	٠,	٠,								٠,	٠,	٠,	.,	٠,
unit	-	٧	٧	V	٧	V	V	V	V	٧	V	٧								٧	٧	٧	٧	٧
s in																								
alga																								
e																								
Alg																								
ae																								
of																								
Lak	_	٧	٧	٧						٧	٧	٧								٧	٧	٧	٧	٧
es		Ť		•						•	•	•								Ĭ	•	•	•	ľ
and																								
pon																								
ds																								
Effe																								
ct																								
of																								
ligh t on																								
the																								
dist																								
ribu																								
tion	_	٧	٧	٧						٧	٧	v	٧	٧	٧	٧				٧				٧
of		-	-								-	-	-	-		-				-				
alga																								
e in																								
Lak																								
es																								
and																								
pon																								
ds																								
Effe																								
ct																								
of																								
nut																								
rien																								
ts	-	٧	٧	٧						٧	٧		٧	٧						٧	٧	٧	٧	٧
on																								
alga																								
e dist																								
ribu																								
tion																								
Toxi																								
C	_	٧	٧	٧									٧	٧						٧				v
alga		٧	V	٧									٧	V						٧				\ \
arga	<u> </u>																<u> </u>							<u> </u>

Ho w to determine the toxins in water er Alg ae as indicate responding to the toxins in water of the pollution of the polluti	e																									
w to determine the the toxi ns in wat er Alg ae as indicator rs for wat er Ass ess me no nt Physiolo gy of Fungi Spo re ger min atio n of fun gi Cr ow de de d-pla te me tho de de de d-pla te me tho de de de de de de de de de de de de de																										
dete the - v v v v v v v v v v v v v v v v v v																										
mi ne the toxi ns in wat er Alg ac as an indicato rs for wat - v v v v v v v v v v v v v v v v v v																										
ne the the the thorical content of the thorical shape of the thori																										
the toxi ns in water er Alg ae as indicato rs for water er Quality and poll ution n Ass ess ess ess ess ess ess ess ess ess	rmi																					ĺ				
the toxi ns in water er Alg ae as indicato rs for water er Quality and poll ution n Ass ess ess ess ess ess ess ess ess ess	ne																									
toxi ns in wat er Alg ae as indi cato rs for wat er qua lity and poll uttio n Ass ess me nt Physiolo gy of Fungi Spo re ger min atio n of fun gi Cr ow de de d- pla te me ttho d Dor V V V V V V V V V V V V V V V V V V V		_	v	V	V									V	٧							V	v	V	V	v
ns in wat er Alg ae as indicato rs for wat - v v v v v v v v v v v v v v v v v v			•	•	•									٠	•							"	١,	•	•	•
in wat er er Alg ae as indicato rs for wat - v v v v v v v v v v v v v v v v v v																										
wat er																										
er																										
er	wat																									
Alg ae as indicato rs for wat - v v v v v v v v v v v v v v v v v v																										
ae as indicato rs for wat - V V V V V V V V V V V V V V V V V V																										
as indicato rs for wat - V V V V V V V V V V V V V V V V V V																										
indicato rs for wat - V V V V V V V V V V V V V V V V V V																										
cato rs for wat v v v v v v v v v v v v v v v v v v	as																									
cato rs for wat v v v v v v v v v v v v v v v v v v	indi																									
rs for wat																										
for wat - v v v v v v v v v v v v v v v v v v																										
wat																	l	l								
er qua lity and poll utio n Ass ess me nt Physiolo gy of Fungi Spo re ger min atio n of fun gi Cr ow de de d-pla te me tho d																										
er qua lity and poll utio n Ass ess me nt Physiolo gy of Fungi Spo re ger min atio n of fun gi Cr ow de de d-pla te me tho d	wat	-	٧	٧	٧								٧	٧	٧							٧				٧
Qua lity and poll utio n																										
lity and poll ution Ass ess me nt Physiolo gy of Fungi Spo re ger min ation of fun gi Cr ow de d-pla te me tho d																										
and poll utio n Ass ess	qua 1:4																ĺ	l								
Poll utio n	nty																									
Utio N																	l	l								
Utio N	poll																									
n Image: state of the content of the cont	utio																									
Ass ess me nt																										
ess me nt																										
me nt									ı													l				
Physiolo gy of Fungi Spo re ger min atio n of fun gi Cr ow de d- pla te me tho d	000																									
Physiolo gy of Fungi Spo re ger min atio n of fun gi Cr ow de d- pla te me tho d		-				v	V	V	٧	V	V	v	٧	٧	٧							v	v	v	٧	٧
## Spo Spo	me	-				٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧
Fungi Spo re ger min atio n of fun gi Cr ow de d- pla te me tho d	me nt					٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧
Fungi Spo re ger min atio n of fun gi Cr ow de d- pla te me tho d	me nt Phys :	iolo				٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧
Spo re ger min atio n of fun gi Cr ow de d-pla te me tho d	me nt Physi	iolo				٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧	٧	٧	٧	٧
re ger min atio	me nt Physi	iolo				٧	٧	٧	٧	٧	٧	٧	٧	√	٧							٧	٧	٧	٧	٧
ger min atio n of fun gi Cr ow de d-pla te me tho d	me nt Physi gy of Fung	iolo				٧	٧	٧	٧	٧	٧	٧	٧	√	√							٧	٧	٧	√	٧
min atio n of fun gi	me nt Physi gy of Fung Spo	iolo				٧	V	٧	V	V	٧	V	✓	✓	v							٧	٧	٧	√	٧
atio n of fun gi	me nt Physi gy of Fung Spo re	iolo				٧	V	٧	V	V	V	V	V	√	٧							V	٧	V	√	٧
atio n of fun gi Cr ow de d- pla te me tho d	me nt Physi gy of Fung Spo re ger	iolo				٧	V	V	٧	V	٧	٧	٧	V	V							V	٧	٧	√	٧
fun gi Cr ow de d-pla te me tho d	me nt Physi gy of Fung Spo re ger min	iolo	V	v/		٧	٧						٧	v								V	٧			
fun gi Cr ow de d- pla te me tho d	me nt Physi gy of Fung Spo re ger min atio	iolo	٧	٧		٧	٧						V	V								V	٧			
gi Cr ow de d-pla te me tho d Dor	me nt Physi gy of Fung Spo re ger min atio	iolo	٧	٧		٧	٧						٧	V								V	٧			
Cr ow de d- pla te me tho d	me nt Phys: gy of Fung Spo re ger min atio n of	iolo	٧	٧		٧	V						٧	V								V	٧			
ow de d- pla te me tho d	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo	٧	V		V	V						٧	v								V	V			
de d- d- pla te me tho d	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo i	V	٧		V	V						V	v								V	V			
d- pla te me tho d	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo i	٧	V		٧	V						√	v								V	V			
pla te me tho d v v v v v v v v v v v v v v v v v v	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo i	V	v		٧	V						√	v								V	V			
te me tho d	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo i	V	√		٧	٧						V	v								V	V			
te me tho d	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo i i	V	V		٧	٧						V	V								V	٧			
Dor y y y y y y	me nt Physical gy of Fung Spo re ger min atio n of fun	iolo i i	V	V		٧	٧						V	V			· ·	· ·	V	V		V	٧			
Dor y y y y y y	me nt Physical gy of Fung Spo re ger min atio n of fun	Cr ow de d- pla	V	V		٧	V						V	√			V	v	٧	٧		V	V			
Dor y y y y y	me nt Physical gy of Fung Spo re ger min atio n of fun	Cr ow de d- pla te	V	V		V	V						V	V			√	√	٧	٧		V	V			
Dor y y y y y	me nt Physical gy of Fung Spo re ger min atio n of fun	Cr ow de d- pla te me	V	√		V	V						V	V			√	√	V	٧		V	V			
	me nt Physical gy of Fung Spo re ger min atio n of fun	Cr ow de d-pla te me tho	V	√		V	V						V	v			√	√	V	V		V	V			
ma '\' '\ '\ '\	me nt Phys: gy of Fung Spo re ger min atio n of fun gi	Cr ow de d-pla te me tho	V	√		V	V						V	√			√	√	V	V		V	V			
	me nt Physi gy of Fung Spo re ger min atio n of fun gi	Cr ow de d-pla te me tho				V	V	V			٧		V	v	v		√	v	V	V		V	V		V	٧

ncy (exo gen ous dor ma ncy																						
	dir ect - soi l- ino cul ati on me tho d (sp eci fic ant ibi oti c me tho d											~		>	~	~	٧					
Con stit utiv e dor ma ncy			٧	٧				٧	٧									٧	٧	٧	٧	٧
	Dil uti on cul tur e me tho											\	>	✓	~	√	٧					
Bre aki ng dor ma ncy		٧				٧	٧	٧													٧	٧
,	Str											٧	٧		٧	٧	٧					

	ea k me tho d																						
Sti mul ator y sub sta nce s (mat ura tion)	u						٧	٧														٧	٧
	As say of ant ibi oti cs														٧	٧		٧	٧				
Hea t sho ck prot eins in fun gi		٧	٧					٧	٧													٧	٧
	Ch em ica 1 ass ay													٧	٧			٧	٧				
Cell ular effe cts of hea t sho ck prot eins		٧			٧	٧						٧	٧							٧	٧		
	Bio log ica														٧	٧	٧	٧	٧				

	1																									
	ass																									
Hea	ay																									
t																										
sho																										
ck			٠,	٠,	١.,					١.,	.,											٠,				
and dev			٧	٧	٧					٧	٧											٧				
elop																										
me																										
nt	C++1																									
	Cyl ind																									
	er-																									
	pla																v	٧								
	te																	•								
	me tho																									
	d																									
Chi																										
tosa n																										
and								٧	٧													٧				
fun																										
gi	Т.,																									
	Tu rbi																									
	di																									
	me																v	v	v	v	٧					
	tric me																	•		-	-					
	tho																									
	d																									
Pro																										
duc tion																										
of																										
chit					v	v	v					v	v	٧	v								٧	v	٧	٧
osa					\ \	V	ľ					\ \	V	V	v								v	٧	v	٧
n by																										
fun																										
gi																										
	All																									
	-or no																									
	ne																									
	gro															٧	٧	٧								
	wt h																									
	me																									
1	tho																									

	d																										
So																											
me																											
app																											
lica																											
tion		٧	٧	٧	٧	٧	٧							٧	٧	٧											
s of																											
chit																											
osa																											
n	D.																										
	Pe nic															٧	v		٧	٧	٧						
	ilin															٧	ľ		V	v	v						
Fun	11111																										
gici		٧	٧	٧				٧	٧	٧	٧	٧	٧	٧	٧								٧	٧	٧	٧	٧
des		•	•	•				ľ	•	•	·	•	•	·	ľ								•		۰	•	
	Se																										
	per																										
	ati																										
	on																										
	an																										
	d																										
	pu rifi																										
																		٧	٧	٧	٧	٧					
	cat ion																										
	of																										
	pe																										
	nic																										
	illi																										
	n:																										
Sys																											
tem																											
ic		V	٧	v				v	v	٧	٧	٧	٧	٧	٧					٧		٧	٧	v	٧	٧	٧
fun		ľ	ľ	'				ľ	•	•	٧	•		٧	•					,		•	•	'	٧	•	١
gici																											
des	Des																										
	Pro																										
	per tie																										
	S																										
	of																	٧	٧	٧	٧	٧					
	pe																		-								
	nic																										
	illi																										
	n																										
Sele																											
ctiv				١.				١.		١.													١.				
e Tan		٧	٧	٧				۷	٧	٧	٧	٧	٧	٧	٧								٧	۷	٧	٧	٧
Top																											
ic	As																										
	ses																	٧	٧	٧	٧	٧					
	SUS	<u> </u>	<u> </u>		<u> </u>			<u> </u>	I			<u> </u>					l	l					<u> </u>				

	sm ent													

Teaching and learning methods / ILOs matrix:

Course contents		ŀ	<			I		F)	Т				
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3		
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧							
Supplementary and library research.										٧	٧	٧		
Practical sections.								٧	٧					
external visits and student activities.										٧	٧	٧		

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs matrix:

Course contents		ŀ	<			Ţ		ŀ)			
	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧
Practical exam								٧	٧	٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Title: Biochemistry, Biochemistry of fermentation, Immunology	Code: 1542
Coordinator	Prof. Dr. Metwally Abdel Azeem Metwally
Other Staff	Prof. Dr. Essam Abou Kassem Prof. Nanis Allam
Course Delivery	1 st semester: 14 x 1h lectures 14 x 2h practical 2 nd semester: 14 x 2 lectures 14 x 4 practical
Date of approval	8/2014

Academic Year : 2014-2015

Professional Information

Course aims:

- 1. Provide the students with the fundamental concepts of sucrose and lipid metabolism and related enzymes.
- 2. Equipped the students with the basis of immunity to bacteria and fungi
- 3. Discuss the mechanism of immunology in tumor and viruses
- 4. Identify the defense systems in Plant
- 5. Develop the modern experimental approaches in biochemistry of fermentation, selection and preservation of microorganisms and production of useful materials.
- 6. Classify the different group of fungi and give an account on it's hosts in different habitats.
- 7. Explore the principles of plant pathology in terms of disease cycle, plant defense against pathogens and methods for controlling plant diseases.

Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the Diploma course the graduate must be able to :-

- A7. Define the lipid and protein isolation and purification also, the purification scheme table of enzymes
- A8. Describe mechanisms of microbial fatty acids biosynthetic enzyme (FAS), enzyme catalysis.
- A9. Explain the importance of antioxidants, their identification and extraction sources.

- A 10. Identify the role of plant immunology in production of human vaccines.
- A11. Discuss the interaction between the pathogen and host.
- A12. Explain the life cycle of certain selected plant diseases.

b- Intellectual skills

By the end of the Diploma course the graduate must be able to :-

- B10. Demonstrate purification of enzymes and proteins
- B11. Elucidate the enzyme kinetic mechanism
- B12. Differentiate between the nature of fatty acids biosynthesis in bacteria and fungi.
- B13. Critically evaluate and discuss the primary literature and topics in particular areas nutrient metabolic different enzymes pathways.
- B14. Elucidate new approach in vaccines production and uses and Immunological techniques.
- B15. Select the appropriate organism and conditions for best fermentation and product.
- B16. Analyze different fungal diseases and demonstrates medicines which could be produced by fungi.
- B17. Knowledged about how the pathogen causes disease to plant.
- B18. selects the appropriate methods controlling diseases caused to plants

c- Professional and practical skills

By the end of the Diploma course the graduate must be able to :-

- C20. Use the proper and more suitable approaches for lipid, protein and enzyme isolation and purifications.
- C21. Manipulate and handle the different steps in enzyme kinetics mechanisms elucidation.
- C22. Practice the best condition for fermentation and vaccines production.
- C23. Explain the principles of and limitation of practical techniques
- C24. Use basic laboratory equipment safely
- C25. Identify and classify common soil fungi.
- C26. Examine the pathogens in terms of how they penetrate the host plant and cause the infection.
- C27. Explain the method of pathogen infection in reference to production of enzymes, toxins, growth regulators, and polysaccharides.

d- General and transferable skills

By the end of the M. Sc. course the graduate must be able to :-

D5. Prepare complete and clear scientific reports.

- D6. Mention scientific systems and tools effectively
- D7. Possess good project management and business skills.
- D8. Identify personal learning needs

Contents

	1.Biochemistry
Week	Торіс
1	Free radicals.
2	Antioxidants.
3	Antioxidant, purpose, types and classification.
4	Antioxidant, sources, founds, antioxidants nutrients.
5	Ascorbic acid (vitamin c) definition, chemistry, mechanism and determination.
6	Vitamin E, α -tecopherol, physiological role toxicity, importance absorbtion and mechanism.
7	Carotene, nomenclature, molecular structure, food source function and toxicity.
8	Selenium: indicator plants, toxicity, accumulation in plants, benefits.
9	Midterm exam.
10	Glutathion (GSH) :biosynthesis, function in animals and plants, methods of determination.
11	Antioxidant enzyme:catalase, where is found, cellular role,factors affecting activity, distribution, hydrogen peroxide.
12	Superoxide:synthesis, basic reaction, structure, superoxide in biology.
13	Superoxide dismutase: types,biochemistry, physiology, role containing oxidative stress.
14	Revision.
	2- Immunoloy
Week	Topic

1	Immunity to bacteria and fungi (avoidance of immune system).
2	Tumor immunology (mechanisms of immunity).
3	Tumor immunology (avoidance of immune system).
4	Viral immunology (mechanisms of immunity).
5	Viral immunology (avoidance of immune system).
6	Plant immunology (introduction, different plant defenses).
7	Round up discussion on the topics of the course.
8	Plant immunology (uses of plant immunology in production of human vaccines,).
9	Vaccination (introduction, traditional production of vaccines).
10	Vaccination (new approach in vaccines production and uses).
11	Immunological techniques (ELISA).
12	Immunological techniques (PCR).
13	Round up discussion on the topics of the course.
14	Assessment

Week	Topic
1	Fementers , history and design of fermenters
2	Batch fermentation, fed batch fermentation
3	Continuous fermentation and scale up of fermentation
4	Methods of culture preservations, criteria for selection of microorganisms for fermentation
5	Maintenance of cultures
6	Production of microbial products, methods of strain improvement
7	Recent approaches in microbial production of human recombinant insulin and hepatitis B vaccines

8	Midterm examination
9	Alcohol production, production of malt beverages
10	Recent approaches in microbial production of organic acids
11	Recent approaches in microbial production of antibiotics
12	Recent approaches in microbial production of enzymes
13	Recent approaches in microbial production of amino acids, Steroid biotransformation
14	Biotechnology of dairy products, Production of Baker's yeast

Laboratories

1- Biochemistry (two hours /week)

- **Lab 1** Paper chromatography of amino acids.
- **Lab 2** Estimation of sugar by Nelson soln.
- **Lab 3** Invertase enzyme.
- **Lab 4** Dehydrogenase enzyme.
- **Lab 5** Catalase enzyme.

2-immunology

(two hours/week)

- **Lab 1** Treatment of experimental Animal protocol
- Lab 2 Immunization routs
- **Lab 3** Bleeding Techniques and collection of samples
- **lab 4** Suggested routes of active immunization against bacterial challenge
- Lab 5 Continue experiment
- **Lab 6** Analysis of immunological parameters and writing a report
- **Lab 7** Revision and quiz
- **Lab 8** Practical Applications of Immunology(Vaccines

,Diagnostic tests)

Lab 9 Continue
 Lab 10 Induced resistance in plant
 Lab 11 Detection of Measurable parameters during plant defense
 Lab 12 continue and writing a report
 Lab 13 Comparison between measurable parameters in animal and plant
 Lab 14 revision

Teaching, and learning methods:

- 4.1.Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	P, T	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

- Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine
- Edited by Tkacz, Jan S.; Lange, Lene Springer 2004
- Dubey and Mahishwari (2006): A Textbook of Microbiology. S.Chand & Company LTD Madigan and Martinko (2006): Brook biology of Microorganisms. 11th edition, Pearson, Prentice Hall.
- Fundamentals of fungi, 2nd ed., Elizabeth Moor-Landecker.
- Fungal Physiology, Second Edition by David H. Griffin, Wiley-Liss, A John Wiley & Sons, Inc, Publication, New York (1994)
- Lecture in botany, royal Holloway collage, university of London, Blackie Glasgow and London distributed in the USA by Chapman and Hall, New York 2000.
- Madigan, Martinko and Parker (2003): Biology of Microorganisms. 10th edition, Pearson, Prentice Hall.
- Methods in Microbiology, C. Booth. Zoosporic fungi in teaching and research, M.S. Fuller and A. Jaworski.

Recommended books

- Plant pathogens, R. Singh. Virology of flowering plants W. A. Stevens, B. Sc Ph.D. Plant pathology (1969), G. Agrios.
- Fungal Genomics Applied Mycology and Biotechnology volume 4 Edited by D K Arora and G G Khachatourians Elsevier February 2004

Web sites

http://www.google.com

http://www.cedarville.edu/academics/sciencemath/silvius/3520/352sites. html

www.safarix.com

www.researchnavigator.com

www.prenhall.com/madigan

http://www.who.int/vaccines/intermediate/hepatitis

http://www.who.int/inffs/en/fact 164.html

Facilities required for teaching and learning

- -Well prepared laboratory, Lyophilizer, Fermenters, PCR, Cooling ultra centrifuge, Rotatory shaker, Selective culture media, chemicals and kits to do all the experiments required for the course. Culture collection of fungi
- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

أد/ متولى عبد العظيم متولى

Head of Department:

أد/ علاء مصطفى أبوزيد

Course Contents - Course ILOs Matrix

Course C	Contents	Knowledge Intellectual Practical																								
		К				е			Int	elle	ectu	ıal				Pra	ctio	cal			Tı	Transferabl				
		u		and erst		di																	е			
				ng																						
1- Bioche mistry	Labs	A 1	A 2	A 3	A 4		B 1	B 2	B 3	B 4		B 6	B 7	B 8	C 1	C 3	C 4	C:	C	C.	1		D 3	D 4		
Two hours /wee k																										
Free radic als	1																									
	Pape r chro mato grap hy of amin o acids	√																			>					
Antio xidan ts	2																									
	Esti mati on of suga r by Nels on soln.	√																			→					
Antio xidan	3																				√	√				

ta	1						1										
ts,																	
purp																	
ose,																	
types																	
,class																	
ificati																	
on																	
	Inver		-		-									V	√		_
	tase	·									٧			V	٧		
	enzy																
	me																
Antio	4			1		\dagger											
xidan																	
t,																	
sourc																	
es,																	
found																	
s,																	
antio																	
xidan																	
t																	
nutri																	
ents																	
CIICS																	
	Dehy					1	√ √								√		
	drog																
	enas																
	e																
	enzy																
	me.																
Ascor	5																
bic																	
acid,																	
defini																	
tion,																	
chem																	
istry,																	
mech																	
anis																	
m																	
and																	
deter																	
minat																	
ion																	

		V					V											
	0 . 1																	
	Catal																	
	ase																	
	enzy																	
	me.																	
Vitam	6														V			
in E,																		
α-																		
tecop																		
herol,																		
physi																		
ologic																		
al																		
role																		
toxici																		
ty,im																		
porta																		
nce																		
								 							V			
				,	,												,	
Carot	7											√			√			
ene																		
nome																		
nclat																		
ure,																		
molec																		
ular																		
struc																		
ture, food																		
sourc																		
e																		
funct																		
ion																		
and																		
toxici																		
ty																		
-5																		
Selen	8							 					√					
ium																		
:indic																		1
						l			- 1			 Į.		Į.		I		, ,

plant																	
,																	
toxici ty																	
,accu																	
mulat																	
ion in																	
plant																	
s,																	
benef																	
its																	
Midter	9						V					√		√			
m																	
exam																	
(GSH)													V				
:																	
Biosy																	
nthes																	
is, funct																	
ion in																	
anim																	
als																	
and																	
plant																	
s,																	
meth																	
ods of																	
deter																	
minat																	
ion.																	
Catal	10														√		
ase:w		\ \ \		٧				٧							v	٧	
here																	
is																	
found																	
cellul																	
ar																	
role,																	
factor																	

			- 1									- 1	-		- 1		
S																	
affect																	
ing																	
activi																	
ty,																	
distri																	
butio																	
n,																	
hydro																	
gen																	
perox																	
ide																	
lue																	
Supe	11,1													V			
roxid	2																
e:syn																	
thesi																	
s,																	
basic																	
reacti																	
on,																	
struc																	
ture,																	
perox																	
ide in																	
biolo																	
gy																	
Supe	13,1					 								√			
roxid	4																
e																	
dism																	
utase																	
types																	
bioch																	
emist																	
ry,																	
physi																	
ology,																	
rolw																	
conta																	
ining																	
oxida																	
tive																	
stres																	
51103	1							1									1

S													
2 - I													
Introd 1 uction													
Treat ment of expe rime ntal Anim al proto col										√			
Immu 2 nity to											√		

bacter ia and fungi (mech anism s of immu															
nity)	Imm uniz ation routs										√				
Immu nity to bacter ia and fungi (avoid ance of immu ne syste m)	3		√					√					~		
	Blee ding Tech niqu es and colle ction of sam ples									√	~	~			
Tumo r immu nology (mech anism s of immu	4		V												

nity)														
	C11~~	-							./	./				$\vdash \mid$
	Sugg ested									√				
	route													
	s of													
	activ													
	е													
	imm													
	uniz													
	ation													
	agai													
	nst													
	bact													
	erial													
	chall													
	eng e													
Tumo	5													
r														
immu														
nology														
(avoid														
ance														
of														
immu														
ne														
syste														
m)														
	Cont													
	inue													
	expe													
	rime													
	nt													
viral	6													
immu														
nology														
(mech														
anism														
s of														
immu														
nity)														
	Anal													
	ysis													
	of													

	imm															
	unol															
	ogica															
	1															
	para															
	mete															
	rs															
	and															
	writi															
	ng a															
	repor															
	t															
viral	7													√		
immu	•								٧	٧				٧	*	
nology																
(avoid																
ance																
of																
immu																
ne																
syste																
m)																
111)																
	Revis															
	ion															
	and															
	quiz															
D1 4	0									/					/	
Plant	8			√						√						
immu																
nology																
(intro																
ductio																
n,																
differe																
nt																
plant																
defens																
es)																
	Pract	1														
	ical										Í		Ī			
	Appli															
	catio															
	ns of															
	Imm															
	unol															

	ogy(Vacc ines ,Diag nosti c tests													
Midter m exami nation	9													
Plant immu nology (uses of plant immu nology in produ ction of huma n vaccin es,)	10		$\sqrt{}$									>		
	conti nue													
Vacci nation (intro ductio n ,tradit ional produ ction of vaccin	11													

es)																	
	Indu ced resis tanc e in plant											√					
Vacci nation (new appro ach in vaccin es produ ction and uses)	12		V		√										√ 	√	
	Dete ction of Meas urab le para mete rs duri ng plant defe nse											>	√ ·				
Immu nologi cal techni ques (ELIS A, PCR)	13		V		√					1/	1			√			
	conti nue and									V							

Immu nologi cal tolera nce	writi ng a repor t			V			V								√		
	Com paris on betw een meas urab le para mete rs in anim al and plant									√	\checkmark	→	>				
3.Bio chem istry of ferm entat ion																	
Feme nters, histor y and design of ferme nters	1	√	V						√						√		
Batch ferme ntatio n, fed	2			 		V			V					√		√	

		1		1								- 1	_					
batch																		l
ferme																		ı
ntatio]
n																		1
		,		,														\vdash
Conti	3	√					√								V]
nuous]
ferme																		1
ntatio																		1
n and]
scale																		1
up of																		1
ferme																		1
ntatio																		1
n																		1
																		1
Metho	4																	
ds of																		
cultur																		
e]
preser]
vation																		1
s,																		1
criteri]
a for																		1
																		1
selecti																		1
on of																		1
micro																		1
organi																		1
sms																		1
for																		1
ferme																		1
ntatio																		l
n																		1
			_															
Maint	5																√	
enanc																		
e of																		
cultur																		
es																		
																		Ш
Produ	6																	
ction																		
of																		l
micro																		l
bial																		
produ																		
cts,																		
		<u> </u>																

metho																
ds of																
strain																
impro																
vemen																
t																
D	7		,												/	
Recen	1												√		√	
t																
appro																
aches																
in																
micro																
bial																
produ																
ction																
of																
huma																
n																
recom																
binan																
t																
insuli																
n and																
hepati																
tis B																
vaccin																
es																
						_										
Midter	8															
m																
exami																
nation																
Alcoh	9															H
ol		٧			٧											
produ																
ction,																
produ																
ction																
of																
malt																
bever																
ages																
Docore				 												1
Recen	10														√	
Recen t	10														√	

amino																П
acids,																
Steroi																
d																İ
biotra																i
nsfor																
matio																i
n																
		,						,								
Biotec	14	√		√			√		√							
hnolo																
gy of																i
dairy																
produ																
cts,																
Produ																
ction																
of																
Baker'																
S																
yeast																
yeasi																
																ш

Teaching and learning methods / ILOs matrix:

Course contents		ı	<			I		ı)	Т			
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3	
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧						
Supplementary and library research.										٧	٧	٧	
Practical sections.								٧	٧				
external visits and student activities.										٧	٧	٧	

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs matrix:

Course contents		ŀ	(I		ŀ)	Т				
	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3		
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧		
Practical exam								٧	٧	٧	٧	٧		

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Title: General Bacteriology, Applied Bacteriology, Applied Mycology, Methodology and Instruments used in microbiology and Tanning of leather	Code: 2054
Coordinator	Prof. Dr. Wagih El-shouny
Other Staff	Prof Dr Essam Azzab Prof. Dr M. Yasser Bedaiwy Prof. Dr. Hanan Mubarak
Course Delivery	1 st semester: 14 x 2h lectures 14 x 4h practical 2 nd semester: 14 x 3 lectures 14 x 6 practical
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

Teach students the modern experimental approaches in bacteriology that reflect the microbial diversity and evolution, in addition to modern techniques used for classification and diagnosis of bacteria. Provide students with the fundamental concepts and principles of microbial mutation basis, polymerase chain reaction, DNA southern blotting, RNA blotting, Western blotting, microbial genes isolation, cloning and expression. In addition to, natural antimicrobial compounds and assessment methods. Learn about Leather industrial tanning process and the roles of microorganisms in this industry. Also, the applications of microbial enzymes in leather treatments. Use of agriculture waste materials for cultivation of edible mushroom and the possible means for biodegradation of colored effluents, in addition to the nature of water pollution with microorganisms.

Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the Diploma course the graduate must be able to :-

- A5. Define the modern experimental approaches in Microbiology that reflect the diversity on microorganisms and its applications in life. Furthermore, to teach the students the modern software programs for microbiology and evolution
- A6. Recognize approaches used in microbial genes: isolation, cloning, expression and antimicrobial drugs
- A7. Identify microbial mutation, polymerase reaction, protein, RNA, DNA blotting.
- A8. Describe mechanisms of microbial leather treatments and to provide the students with knowledge about microbial enzymes used in that industry

b- Intellectual skills

By the end of the Diploma course the graduate must be able to :-

- B6. Critically evaluate the information about the different methods and materials used in microbiology research from a variety of sources
- B7. assess the role of microorganism in leather tanning process
- B8. Use lingocellulosic residue as a feed and the principles underlying the use of enzymes produced by white-rot fungi for effluent degradation.
- B9. plan, execute and present an independent piece of work (e.g. a project) within a supported framework
- B10. Execute basic manipulation of biological data (including some statistical analysis if appropriate), and to work safely in a laboratory environment

c- Professional and practical skills

By the end of the Diploma course the graduate must be able to :-

- C7. Carry out, handle and analyze data derived from the morphological, biochemical, immunological and molecular data to produce bacterial classification trees.
- C8. Use different methods of microbial leather tanning process.
- C9. Isolate and propagate microbial mutants in pure form and differentiate between them. Manipulate the microbial genes in vitro
- C10. Prepare the substrate and spawn and adjust the proper conditions of solid state fermentation for cultivation of edible mushroom
- C11. Identify the pathogenic microorganisms transmitted by water, ensuring the safety of drinking water.

C12. Describe morphological, physiological and biochemical criteria as sources of taxonomic information and their use in bacteria classification

d- General and transferable skills

By the end of the Diploma course the graduate must be able to :-

- D5. Work safely, competently and effectively in the laboratory
- D6. Independent learning ability required for continuing professional development.
- D7. Able to prepare complete and clean scientific report
- D8. Ability to work with others, use and manage ideas and information

Contents

1-General bacteriology(1 hour / week)

Week	Topic
1	Microbial phylogeny derived from ribosomal RNA sequences
2	Microbial taxonomy and its relationship to phylogeny
3	Chemotaxonomy (Genomic DNA:DNA hybridization, ribotyping, multilocus sequencing type, and lipid profiling)
4	The species concept in microbiology. Nomenclature and Bergey's Manual
5	Isolation of pathogenic bacteria from clinical specimens (Growth media, blood cultures, urine cultures and fecal cultures)
6	Wounds and Abscesses. Genital specimens and cultures of anaerobes
7	Growth dependent identification methods. Clinical diagnosis
8	Midterm examination
9	Antimicrobial drug susceptibility testing, Safety in Microbiology laboratory, Biological containment and laboratory biosafety levels
10	Immunology and clinical diagnostic methods
11	Immunoassays for infectious diseases

Week	Topic
	3-Applied Mycology(1 hour / week)
14	Assessment
13	Discussion
12	Microbial plastics
11	Natural gases
10	Petroleum Biodegradation
9	Biodegradation xenobiotics
8	Bioremediation
7	Silage making and single-cell protein
6	Biological washing powders
5	Sewage treatment
4	Water treatment
3	Biomining (Bioleaching)
2	Bacteria in food
1	Microbiolgical control of plant pathogens
	2-Applied Bacteriology(1 hour / week)
Week	Topic
	Round up discussion on the topics of the course
	Recent Molecular diagnostic methods
15	Immunoblot procedure and identification of specific proteins associated with specific pathogen
14	Fluorescent antibodies, Enzyme-linked immunosorbent assay and radioimmunoassay, sensitivity, and diagnostic and research laboratories applications
13	In Vitro Antigen-Antibody reactions, agglutination and uses in clinical and research laboratories
12	Polyclonal and Monoclonal Antibodies, diagnostic and therapeutic uses

Cultivation of edible mushroom: preparation of substrate, 1 spawn and methods of spawning 2 Conditions of solid state fermentation. 3 Biodegradation of colored effluents: enzymes responsible for effluents degradation 4 culture condition and microorganisms for effluents degradation 5 Upgrading of lignocellulosic residue as feed: nutritive value of agricultural waste 6 Digestibility of straw and treatment of straw with white-rot fungi. 7 Assignment 8 Water microbial pollution 9 Water Microbiology: pathogenic microorganisms transmitted by water, Ensuring the safety of drinking water, 10 11 water pollution 12 water purification Sewage-treatment. 13 14 Assessment 4-Materials and Methods(1 hour / week) Week **Topic** 1 Mutation. mutant detection, mutant selection and carcinogenicity testing. 2 Southern blotting technique, 3 polymerase chain reaction Gene isolation and cloning 4 5 Gene Probes 6 Cloning vectors

7

Protein Blotting

8	Northern blotting
9	Western blotting
10	Gene expression
11	Expression vectors
12	Assignment
13	Application of genetic engineering
14	Antimicrobial drugs assessment
15	Antibacterial compounds
16	Antifungal compounds
5-Le	eather Tanning By Microorganisms(1 hour / week)
1	Hydrolytic enzymes
Veek	Topic
2	Microbial proteases
3	Microbial collagenases
4	Microbial gelatinases
5	Microbial Lipases
6	Leathers nature
7	Leather tanning process
8	Processing of leather during tanning preparation
9	Protection the processed leather against microbial invaders
10	Preservation of the processed leather against microbial invaders
11	Assignment
12	Microbial problems associating with Leather processing during tanning process at industrial level
13	New approaches for leather processing during tanning process
14	Open discussion

Practical course of general bacteriology(2 hour / week)

- g. Isolation of bacteria from different sources.
- h. Biochemical identification of isolated bacteria.
- i. Molecular identification of bacteria.
- j. Isolation of bacteria from different clinical samples.
- k. Determination of antimicrobial susceptibility of antibiotics against pathogenic bacteria.
- I. Immunological and serological studies of pathogenic bacteria

Practical course of applied bacteriology(2 hour / week)

- 1- Isolation of bacteria from different food sources.
- 2- Isolation and enumeration of bacteria from water by filteration memberane method
- 3- Isolation of hyperaccumelator bacteria from polluted soil.
- 4- Extraction of lipase and protease enzymes from bacteria.
- 5- Determination of antagonistic activity of bacteria against plant pathogenic microorganisms.
- 6- Production of natural gases from bacteria.

Practical course of applied mycology(2 hour / week)

- 1-Pretreatment of substrate for fungal solid state fermentation (FSSF).
- 2- Different inoculum type in FSSF.
- 3- Effect of water content on fungal growth during FSSF.
- 4-PH requirement of fungal growth during FSSF.
- 5- Temperature variation and control during FSSF.
- 6- Different substrate.
- 7- Factors involved in the selection of a suitable substrate for the desired fungi to grow.
- 8- Factors affecting spawn preparation.
- 9- cultivation of edible mushroom.
- 10- Estimation of digestibility of fermented Lignocellulosics compound.
- 11- Decolorization of colored effluents.
- 12- Antimicrobial activity of some fungal pigment.
- 13- Production of amylase enzyme.
- 14- Production of protease enzyme.

Teaching, and learning methods:

- 4.1. Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	Р, Т	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

Microbiology: Bacteriology v. 2 (Blackwell Underground Clinical Vignettes) by Vikas Bhushan, Tao Le, and Vishal Pall (Paperback - 1 May 2005)

Recombinant DNA by Watson, J.D., Gilman, M., Witkowski, J. and Zoller, M. (1992), Scientific American Books distributed by W.H. Freeman and Company, New York, USA

Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine

Edited by Tkacz, Jan S.; Lange, Lene Springer 2004 Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine Edited Jan S.; Lene by Tkacz, Lange, Springer 2004

Madigan and Martinko (2006): Brook biology of Microorganisms. 11th edition, Pearson, Prentice Hall.

Dubey and Mahishwari (2006): A Textbook of Microbiology. S. Chand & Company LTD

Recommended books

Molecular Genetics of Bacteria (Hardcover) by Larry Snyder, Wendy Champness 2002

Modern Microbial Genetics by Uldis N. Streips and Ronald E. Yasbin (Hardcover - Feb 7, 2002)

An Overview on Toxigenic Fungi and Mycotoxins in Europe Edited by Antonio Logrieco and Angelo Visconti Springer 2004

Fungal Genomics - Applied Mycology and Biotechnology volume 4 Edited by D K Aurora and G G Khachatourians Elsevier February 2004

Madigan, Martinko and Parker (2003): Biology of Microorganisms. 10th edition, Pearson, Prentice Hall.

Madigan, Martinko and Parker (2000): Biology of Microorganisms. 9th edition, Pearson, Prentice Hall.

Dubey and Mahishwari (2004): A Textbook of Microbiology. S.Chand & Company LTD Dubey and Mahishwari (2003): A Textbook of Microbiology. S.Chand & Company LTD

Web sites

http://www.accessexcellence.org/RC/genetics.htm

http://www.oxfordjournals.org

http://www.cedarville.edu/academics/sciencemath/silvius/3520/352sites.

www.safarix.com

www.researchnavigator.com

Facilities required for teaching and learning

- Well prepared laboratory, Lyopholizer, ELISA reader, PCR, Fluorescent Microscope,
- Selective culture media, chemicals and kits to examine all the tests required for the course
- Course web page, digital camera as tool for active learning
- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.
- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

_					-	
Cou	rca	CO	ar.	dın	2t0	
	36	LU			alv	

أ.د/ وجيه الشوني

Head of Department:

أد/ علاء مصطفى أبوزيد

Course Contents - Course ILOs Matrix

Course Contents	Weeks																						
Contents			ar ider	rled nd rstar		Intellectual							Practical						Tranferrabl e				
General bacteri ology		A 1	A 2	A 3	A4	_ E		B 2	B 3	B 4	B 5	C 1	C 2	C 3	C 4	C 5	C 6	D 1	D 2	D 3	D 4		
Microbia l phylogen y derived from ribosom al RNA sequenc es	1	٧	V										٧							٧	٧		
	Isolatio n of bacteria from differen t sources											√	٧										
Microbia 1 taxonom y and its relations hip to phyloge ny	2	٧	٧										٧							٧	٧		
	Bioche mical identific ation of isolated bacteria												٧		٧	٧							
Chemot axonom	3	٧	٧					40	06				٧							٧	٧		

y (Genomi c																
DNA:DN A hybridiz																
ation, ribotypi ng,																
multiloc us																
sequenci ng type, and lipid profiling)																
	Molecul ar identific ation of bacteria									٧	٧	٧	٧			
The species concept in microbio logy. Nomencl ature and Bergey's Manual	4	٧	٧	V						٧					√	٧
	Isolatio n of bacteria from differen t clinical samples				٧					V		>	>			
Isolation of pathoge nic bacteria	5	٧					٧	٧	٧	٧					٧	٧

from clinical specime ns (Growth media, blood cultures , urine cultures and fecal cultures)																				
Wounds and Abscess es. Genital specime ns and cultures of anaerob es	5	٧	٧	٧	V	٧	٧	√	٧	٧	٧	٧	√	٧	√	٧	٧	٧	٧	V
	Determi nation of antimic robial suscepti bility of antibiot ics against pathog enic bacteria									√		V	√	V	V					
Growth depende nt identific ation methods . Clinical	6	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	√	٧	٧	٧	٧	٧	٧	√

diagnosi																				
S																				
	Immun ological and serologi cal studies of pathog enic bacteria											٧	٧	√		٧				
Midterm examina tion	7	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Antimicr obial drug suscepti bility testing, Safety in Microbio logy laborato ry, Biologic al contain ment and laborato ry biosafety levels	7	V	V	V	V	V	٧	٧	V	٧	٧	V	٧	>	٧	V	٧	٧	>	V
Immuno logy and clinical diagnost ic methods	8	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	✓	٧	٧	٧	٧	V	٧
Immuno assays	8	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

for infectiou s diseases																				
Polyclon al and Monoclo nal Antibodi es, diagnost ic and therape utic uses	9	∨	٧	∨	✓	∨	٧	∨	>	✓	>	٧	∨	٧	>	∨	٧	✓	<	<
In Vitro Antigen- Antibod y reaction s, agglutin ation and uses in clinical and research laborato ries	10	V	V	V	V	٧	V	٧	V	V	٧	٧	٧	V	V	٧	٧	V	V	V
Fluoresc ent antibodi es, Enzyme-linked immuno sorbent assay and radioim munoas say, sensitivi	11	√	٧	√	V	√	٧	√	>	√	٧	√	√	٧	>	√	٧	√	V	V

ty, and diagnost ic and research laborato ries applicati ons																	
Immuno blot procedu re and identific ation of specific proteins associat ed with specific pathoge n		12	✓	>	>	>	>	>				>	>	>	>	>	V
Recent Molecul ar diagnost ic methods	13		>	>	✓	٧	>	>				<	>	>	>	<	~
Round up discussi on on the topics of the course	14		٧	٧	٧	٧	٧	٧				>	٧	✓	>	✓	√
Microbia 1 phylogen y derived from ribosom al RNA sequenc																	

es																
Applied Bacteri ology		٧					٧	٧	٧	٧	٧	٧	٧	٧	٧	٧
Microbio lgical control of plant pathoge ns	1	٧					٧	٧					٧	٧	∨	√
	Isolatio n of bacteria from differen t food sources							٧	٧	٧		٧				
Bacteria in food	2	٧					٧	٧					٧	٧	٧	٧
	Isolatio n and enumer ation of bacteria from water by filterati on membr ane method						٧	√		√						
Biomini ng (Bioleac hing)	3	٧					٧	٧					٧	٧	٧	٧
	Isolatio n of hyperac cumelat						٧	٧	V	٧						

	or bacteria from pollute d soil																
Water treatme nt	4	٧						٧	٧					٧	٧	٧	٧
	Extra ction of lipase and prote ase enzy me from bacte ria							V		√	√	√					
Sewage treatme nt	5	٧	٧	٧	٧			٧	٧					٧	٧	٧	٧
	Determi nation of antagon istic activity of bacteria against plant pathog enic microor ganisms							٧		√		√	>				
Biologic al washing powders	6	٧	٧	٧	٧			٧	٧	٧	٧	٧	٧	٧	٧	٧	٧

	Product																	
	ion of																	
	natural																	
	gasese																	
	from																	
	bacteria																	
	Dacteria																	
Silage	7	٧					٧	٧	٧	٧								٧
making																		
and																		
single-																		
cell																		
protein																		
Bioreme	8	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧							٧
diation																		
Biodegra	9	٧	٧				٧	٧	٧	٧	٧							٧
dation																		
xenobiot																		
ics																		
	10	٧	٧				٧	٧	٧	٧	٧							٧
Petroleu																		
m																		
Biodegra																		
dation																		
Natural	11	٧	٧				٧	٧	٧	٧	٧							٧
gases																		
Microbia	12	٧	٧				٧	٧	٧	٧	٧							٧
1																		
plastics																		
Discussi	13																	
on																		
Assessm	14	٧	٧												٧	٧	٧	٧
ent																		
Applied													٧	٧	٧	٧	٧	٧
Mycolog																		
y																		
Cultivati	1	٧	٧	٧	٧	٧												٧
on of																		
edible																		
mushro																		

om:															
preparat															
ion of															
substrat															
e, spawn															
and															
methods															
of .															
spawnin															
g															
	Pretrea								٧	٧	٧	٧			
	tment														
	of														
	substrat														
	e for														
	FSSF														
Conditio	2	٧	٧	٧	٧	٧									٧
ns of															
solid															
state ferment															
ation.															
auon.															
	Effect							٧	٧	٧		٧			
	of														
	water														
	content														
	on														
	fungal														
	growth														
	during FSSF														
Biodegra	3	٧	٧	٧	٧	٧									٧
dation of															
colored effluents															
:															
enzymes															
responsi															
ble for															
effluents															
degradat															
ion															

	PH								٧	٧	٧	٧	٧						
	require ment of fungal growth during FSSF								•	•	•								
culture conditio n and microorg anisms for effluents degradat ion	4	٧	٧	٧	٧	V													√
	Temper ature variatio n and control during FSSF							<	<	٧	>	<	<						
Upgradi ng of lignocell ulosic residue as feed: nutritive value of agricult ural waste	5	٧											V	V	V	٧	V	V	V
	Differen t substrat e							٧	٧	٧	٧								
Digestibi lity of straw and	6	٧											٧	٧	٧	٧	٧	٧	٧

treatme												1					
nt of																	
straw																	
with																	
white-																	
rot																	
fungi.																	
rungi.																	
	Factors								٧	٧	٧		٧				
	involve																
	d in the																
	selectio																
	n of a																
	suitable																
	substrat																
	e for																
	the																
	desired																
	s fungi																
	to grow																
	togrow																
Assignm	7	٧		٧	٧	٧	٧	٧	٧	٧						٧	٧
ent																	
	C ±'=±'							-1	-1		-,		-/				
	Cultivati							٧	٧		٧		٧				
	on of																
	edible																
	mushro																
	om																
Water	8	٧		٧	٧	٧	٧	٧	٧	٧						٧	٧
microbia																	
1																	
pollutio																	
n																	
	Effect						٧			٧		٧	٧				
	of																
	water																
	content																
	on																
	fungal																
	growth																
	during																
	FSSF																

Water Microbio logy: pathoge nic microorg anisms transmit ted by water,	9	V	٧					√	٧				V	V
	FACTOR S AFFECTI NG SPAWN PREPAR ATION					✓	✓		V	٧				
Ensurin g the safety of drinking water,	10	٧	٧					>	٧				>	√
	Estimati on of digestib ility of ferment ed lingo cellulosi sis compou nd						>		>	>				
water pollutio n	11	٧	٧					٧	٧				٧	٧
	Decolor ization of colored effluent						٧		٧	٧				

	s													
	3													
water purificat ion	12													
	Antimic robial activity of some fungal pigmen t						√	٧		٧				
Sewage- treatme nt.	13													
	Product ion of amylase enzyme													
Assessm ent	14	٧	٧	٧				٧	٧	٧	٧			
	Product ion of proteas e enzyme							V	٧		٧			
Materia ls and Method s		٧	٧	٧				٧	٧	٧	٧			
Mutatio n, mutant detectio n, mutant selection and carcinog enicity	1	٧	٧	٧				٧	٧	٧	٧			

testing.																	
Souther n blotting techniqu e,	2	٧	٧	٧							٧						
polymer ase chain reaction	3	٧	٧	٧							٧						
Gene isolation and cloning	4	٧								٧	٧	٧	٧	٧	٧	٧	٧
Gene Probes	5	٧								٧	٧	٧	٧			٧	٧
Cloning vectors	6	٧								٧	٧	٧	٧			٧	٧
Protein Blotting	7	٧								٧	٧	٧	٧			٧	٧
Norther n blotting	8	٧	٧	٧	٧	٧	٧				٧	٧	٧			٧	٧
Western blotting	9	٧	٧	٧	٧	٧	٧				٧	٧	٧				٧
Gene expressi on	10	٧	٧	٧	٧	٧	٧				٧	٧	٧				٧
Expressi on vectors	11	٧									٧	٧	٧				٧
Assignm ent	12	٧								٧	٧	٧	٧				٧
Applicati on of genetic engineer	13	٧								٧	٧	٧	٧				٧

ing																				
Antimicr obial drugs assessm ent	14	٧											٧	٧	٧	٧				٧
Antibact erial compou nds	15	٧											٧	٧	٧	٧				٧
Antifung al compou nds	16	٧											٧	٧	٧	٧	٧	٧	٧	٧
Leather Tannin g By Microo rganis ms																				
Microbia 1 protease s	1	٧						٧	٧	٧	٧									٧
Microbia 1 collagen ases	2	٧						٧	٧	٧	٧									٧
Microbia 1 gelatina ses	3	٧						٧	٧	٧	٧									٧
Microbia 1 Lipases	5	٧						٧			٧									٧
Leathers nature	6	٧	٧	٧	٧	٧	٧	٧			٧									٧
Leather tanning process	7	٧									٧	٧	٧	٧	٧					

D			ı						,									
Processi ng of leather during tanning preparat ion	8	V							٧	V	٧	V	٧					
Protectio n the processe d leather against microbia l invaders	9	٧							٧	٧	٧	٧	٧					
Preserva tion of the processe d leather against microbia 1 invaders	10	>							V									
Assignm ent	11	٧				٧	٧	٧	٧					٧	٧	٧	٧	٧
Microbia 1 problem s associati ng with Leather processi ng during tanning process at industri al level	12	>				>	√	√	٧					√	>	√	V	√

New	13	٧						٧	٧	٧	٧			٧	٧	٧	٧	٧
approac																		
hes for																		
leather																		
processi																		
ng																		
during																		
tanning																		
process																		
Open	14	٧	٧	٧	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧	٧	٧
discussi																		
on																		
A = = = = = =	15																	
Assesse	15																	
ment																		

Teaching and learning methods / ILOs matrix:

Course contents		ı	<			I		ı)		Т	
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧					
Supplementary and library research.										٧	٧	٧
Practical sections.								٧	٧			
external visits and student activities.										٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs matrix:

Course contents		ŀ	<			I		F)		T	
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧
Practical exam								٧	٧	٧	٧	٧

* K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Title: Biostatistics	Code: 1518
Coordinator	Professor Kamal Shaltout
Other Staff	Prof. Dr/ M. Ezzat Abdel Monssef
Course Delivery	1 st semester: 14 x 12h lectures 14 x 2h practical 2 nd semester: 14 x 1 lectures
Date of approval	8/2014

Academic Year: 2014-2015

Professional Information

Course aims:

Achieve a comprehensible form of the too much data that characterizes the modern biological research. Apply statistical tests for evaluating differences, variations and associations between populations and their significance in probability terms. Teach the students the modern software programs for statistical analysis and to interpret and make inferences from analysis of set of observations sampled from a population. Find out the best possible experimental design that provides the best sorting out of the controlled and uncontrolled variations.

Intended learning outcomes of course (ILOs) a-Knowledge and understanding:

By the end of the M. Sc. course the graduate must be able to :-

- A1. Identify the role of the biostatistics in the procedure of the biological scientific research.
- A2. Recognize the association between variables in normal and non-normal distributed populations (correlations and regressions).
- A3. Compare between each pair of treatments in multi-treatment experiments
- A4. Explain the tests of significance of difference between two or more than two sampled populations.
- A5. Discuss the application, advantages and disadvantages of the different types of experimental designs.

b- Intellectual skills

By the end of the M. Sc. course the graduate must be able to :-

- B16. Differentiate between the characteristics of the different types of distributions
- B17. Demonstrate the principles and approaches underlying current methods of biostatistics and its application using computer software programs
- B18. Apply the best suitable statistical tests for the different biological experiments
- B19. Design suitable experimental
- B20. Analyze the results statistically

c- Professional and practical skills

By the end of the Diploma course the graduate must be able to :-

- C28. Perform the best suitable statistical tests for the different biological experiments
- C29. Provide the statistical consultation for the students and researchers of biology.
- C30. Prepare the suitable experimental design and how to analyze the results statistically

d- General and transferable skills

By the end of the Diploma course the graduate must be able to :-

- D17. Use databases and library search methods as well as internet sites
- D18. Independent learning ability required for continuing professional development
- D19. Work with others, use and manage ideas and information.
- D20. Demonstrate written and verbal communication skills on modern approaches

Contents

Week	Topic (1 hour / week)
1	Introduction about Biostatistics as a tool of scientific research
2	Sampling of attributes
3	Frequency and probability distributions
4	Normal distribution
5	Binomial distribution
6	Frequency and probability distributions

7	Normal distribution and Binomial distribution
8	Poisson distribution
9	Tests of significance
10	Round-up discussion on the previous topics
11	Partial examination
12	Introductory note on analysis of variance
13	Data transformations, One-way analysis of variance
14	Some basic experimental designs (completely random,
	randomized complete block and Latin square designs)
15	Two-way analysis of variance
16	Split-plot experimental design Split-plot experimental design
17	Least significant difference (LSD)
28	Least significant range (LSR) tests
29	Simple linear regression
20	Simple linear regression
21	Rank correlation
22	Curve fitting
23	method of least squares
24	Multiple correlation, regression and analysis of time series
25	Multiple regression
26	Analysis of time series
27	Round up discussion on the previous topics
28	Round up discussion on the previous topics

4. Teaching, and learning methods:

- 4.1. Formal lecturing including visual PowerPoint; blackboard, and chalk presentation.
- 4.2. Supplementary information from internet, and library research.
- 4.3. Practical sections with good handling practice, and open discussions.
- 4.4. Independent learning tasks, external visits, and student activities.

5. Student assessment:

Assessment Method	Skills assessed*	Assessment Length	Schedule	Percentage	Degree
Written exam	K, I, T	2 h.	16 th week	60	60
Practical exam	Р, Т	2 h.	15 th week	40	40
Total				100	100

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

List of references

Course notes

Essential books (text books)

Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA

Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Zar, J. H. 1984. Biostatistical Analysis: Second Edition. Prentice Hall, Inc., New Jersy, USA

Snedecor, G. W. & Cochran, W. G. 1967. Satistical Methods. The Iowa State University Press, Iowa, USA.

Recommended books

Voelkl, K. E. & Gerber, S. B. 1999. *Using SPSS for Windows: Data Analysis and Graphics.* Springer, New York, USA.

Stephens, L. J. 1998. *Beginning Statistics*. Schaum's Outline Series, McGraw-Hill. New York, USA.

Web sites

www.google.com

http://www.accessexcellence.org/RC/genetics.htm

www.researchnavigator.com

8. Facilities required for teaching and learning

- Generic resources, such as the library.
- Electronic copies of past exam papers and example assessments.

- Computer Aided, such as E-mail, online conference, data show.
- Course web page, Digital camera for images collections as a tool for active learning

Course coordinator:

أد/ كمال حسين شلتوت

Head of Department:

أد/ علاء مصطفى أبوزيد

Date: 8/2014

Tanta University, Faculty of Science

Course Contents - Course ILOs Matrix

Course code:1518, course title: Biostatistics and Biochemistry

Course Contents	We eks																					
contents	CKS			and	dge ndin	g	Inte	Intellectual					Practical						Tranferrable			
		A 1	A 2	A 3	A 4	B 1	B 2		B 4	B 5	C 1	C 2	C 3	C 4	C 5	C 6	D 1	D 2	D 3	D 4		
Introduc tion about Biostatis tics as a tool of scientifi c research	1	٧										V	✓	√	√				٧	√		
Samplin g of attribute s	2	٧										٧	٧	٧	٧				٧	٧		
Frequen cy and probabili ty distribut ions	3	٧										٧			٧				٧	٧		
Normal distribut ion	4	٧										٧			٧				٧	٧		
Binomial distribut ion	5	٧	٧	٧																٧		
Frequen cy and probabili ty	5	٧	٧	٧																٧		

distribut ions																		
Normal distribut ion and Binomial distribut ion	6	٧									٧	٧	٧	٧	٧	٧	√	٧
Poisson distribut ion	7	٧									٧					٧	٧	٧
Tests of significa nce	7	٧									٧					٧	٧	٧
Round- up discussi on on the previous topics	8	٧									٧	٧						٧
Partial examina tion	8	٧	٧	٧						٧								
Introduc tory note on analysis of variance	9						٧	٧	٧	٧								
Data transfor mations, One-way analysis of variance	10	٧	٧	٧						٧								
Some basic experim ental	11	٧	٧	٧						٧	٧					٧	٧	√

1 .	ı			1				1		1	1			1	1		
designs																	
(complet																	
ely																	
random,																	
randomi																	
zed																	
complete																	
block																	
and																	
Latin																	
square																	
designs)																	
Two-way	12	٧				٧	٧	٧	٧	٧	٧				٧	٧	٧
analysis																	
of																	
variance																	
Split-	13	٧				٧	٧	٧	٧	٧	٧				٧	٧	٧
plot																	
experim																	
ental																	
design																	
Split-																	
plot																	
experim																	
ental																	
design																	
Least	14	٧				٧	٧	٧	٧	٧	٧				٧	٧	٧
significa	1-7	•				*	,	\ \	٧	\ \	\ \				\ \	٧	٧
nt																	
differenc																	
e (LSD)																	
Least	15																
significa																	
nt range																	
(LSR)																	
tests																	
Simple	16	٧	٧	٧	٧	٧								٧	٧	٧	٧
linear																	
regressio																	
n				ļ													
Simple	17	٧	٧	٧													
linear																	
regressio																	
n																	

Teaching and learning methods / ILOs matrix:

Course contents		I	<			I		F)	Т		
	A1	A2	A3	A4	B1	B2	В3	C1	C2	D1	D2	D3
Formal lecturing.	٧	٧	٧	٧	٧	٧	٧					
Supplementary and library research.										٧	٧	٧
Practical sections.								٧	٧			
external visits and student activities.										٧	٧	٧

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

Assessment methods / ILOs matrix:

Course contents		ŀ	(I		F)	Т			
	A1	A2	А3	A4	B1	B2	В3	C1	C2	D1	D2	D3	
Written exam	٧	٧	٧	٧	٧	٧	٧			٧	٧	٧	
Practical exam								٧	٧	٧	٧	٧	

^{*} K= Knowledge, and understanding skills; I= Intellectual skills; P= Professional, and practical skills; T= General, and transferable skills.

